26 research outputs found

    Evaluation of prairie grasses for reducing the environmental impact of herbicide contamination

    Get PDF
    The primary goal of this dissertation was to evaluate the use of prairie grasses for reducing the environmental impact of herbicides. Studies included: use of prairie grasses as a phytoremediation tool for contaminated soil; comparison of grass species for use in vegetative buffer strips; fate of 14C-pendimethalin in vegetated and unvegetated soil; and environmental hazards of pendimethalin contaminated soil.;Throughout this dissertation, evidence was presented that prairie grasses can increase the dissipation rate of herbicides. In one study, 78% less metolachlor and 39% less pendimethalin remaining in vegetated treatments as compared to unvegetated treatments. In a separate study, the presence of nearly all grasses tested, but specifically the prairie grasses, resulted in greater degradation of atrazine and metolachlor in rhizosphere soil as compared to unvegetated soil. Phytoremediation mechanisms likely involve plant uptake and increased soil degradation.;Prairie grasses were also shown to decrease movement of pesticides both through the soil column and into biota, thus serving as a phytostabilization agent. Nearly 20% of the metolachlor in unvegetated columns leached out of the bottom of the column after application of an artificial rain event , while only 5% leached out of vegetated columns. It was also shown that even though vegetated columns allowed infiltration of artificial surface runoff at a much faster rate, the total amount of herbicide moving through the column was held constant, and the amount leaching through after initial applications of herbicide was reduced. Additionally, the presence of vegetation decreased the bioavailability of pendimethalin as measured by earthworm uptake and toxicity to lettuce seedlings.;Pendimethalin residues are very persistent and are likely to be present at some level following bioremediation. Therefore, a hazard evaluation was performed to determine tolerable soil concentrations of pendimethalin that could remain without risk to the biota in the environment. Even low levels of pendimethalin, 10mg/kg or less, were shown to have toxic effects on plants and earthworms, and concentrations as low as 30 mg/kg were shown to have potentially toxic effects through trophic transfer. Thus remediation would need to continue until pendimethalin is reduced to field application levels (10 mg/kg) or less

    Growth inhibition of UV filters on the freshwater microalga Scenedesmus acutus

    Get PDF
    As the use of personal care products with organic ultraviolet (UV) filters are increasing, so is the exposure risk of these compounds to aquatic ecosystems. This study focuses on the inhibition growth effect of four common UV filters on the freshwater microalgae, Scenedesmus acutus. Fluorescence of chlorophyll a was used as a measure of growth during a 96-h exposure period, and growth inhibition was utilized as the endpoint. All UV filters inhibited growth with increasing concentration, except for avobenzone and octisalate, which did not decrease reproduction at any treatment level up to water solubility. Lowest observed effect concentrations for atrazine, homosalate, and oxybenzone were 117 μg/L, 100 μg/L, and 1875 μg/L, respectively. Homosalate was the most toxic UV filter followed by oxybenzone with avobenzone and octisalate likely to be not toxic to S. acutus. These results indicate that toxicity to freshwater algae is not likely at environmentally relevant concentrations. However, further research should consider the impact of UV light on toxicity.Lew Wentz FoundationIntegrative Biolog

    Land use effects on pesticides in sediments of prairie pothole wetlands in North and South Dakota

    Get PDF
    Prairie potholes are the dominant wetland type in the intensively cultivated northern Great Plains of North America, and thus have the potential to receive pesticide runoff and drift. We examined the presence of pesticides in sediments of 151 wetlands split among the three dominant land use types, Conservation Reserve Program(CRP), cropland, and native prairie, in North and South Dakota in 2011. Herbicides (glyphosate and atrazine) and fungicides were detected regularly, with no insecticide detections. Glyphosate was the most detected pesticide, occurring in 61% of all wetlands, with atrazine in only 8% of wetlands. Pyraclostrobin was one of five fungicides detected, but the only one of significance, being detected in 31% of wetlands. Glyphosate was the only pesticide that differed by land use, with concentrations in cropland over four-times that in either native prairie or CRP, which were equal in concentration and frequency of detection. Despite examining several landscape variables, such as wetland proximity to specific crop types, watershed size, and others, land use was the best variable explaining pesticide concentrations in potholes. CRP ameliorated glyphosate in wetlands at concentrations comparable to native prairie and thereby provides another ecosystem service from this expansive program

    Comparative Proteomic Analysis of the PhoP Regulon in Salmonella enterica Serovar Typhi Versus Typhimurium

    Get PDF
    Background: S. Typhi, a human-restricted Salmonella enterica serovar, causes a systemic intracellular infection in humans (typhoid fever). In comparison, S. Typhimurium causes gastroenteritis in humans, but causes a systemic typhoidal illness in mice. The PhoP regulon is a well studied two component (PhoP/Q) coordinately regulated network of genes whose expression is required for intracellular survival of S. enterica. Methodology/Principal Findings: Using high performance liquid chromatography mass spectrometry (HPLC-MS/MS), we examined the protein expression profiles of three sequenced S. enterica strains: S. Typhimurium LT2, S. Typhi CT18, and S. Typhi Ty2 in PhoP-inducing and non-inducing conditions in vitro and compared these results to profiles of phoP−/Q−phoP^−/Q^− mutants derived from S. Typhimurium LT2 and S. Typhi Ty2. Our analysis identified 53 proteins in S. Typhimurium LT2 and 56 proteins in S. Typhi that were regulated in a PhoP-dependent manner. As expected, many proteins identified in S. Typhi demonstrated concordant differential expression with a homologous protein in S. Typhimurium. However, three proteins (HlyE, STY1499, and CdtB) had no homolog in S. Typhimurium. HlyE is a pore-forming toxin. STY1499 encodes a stably expressed protein of unknown function transcribed in the same operon as HlyE. CdtB is a cytolethal distending toxin associated with DNA damage, cell cycle arrest, and cellular distension. Gene expression studies confirmed up-regulation of mRNA of HlyE, STY1499, and CdtB in S. Typhi in PhoP-inducing conditions. Conclusions/Significance: This study is the first protein expression study of the PhoP virulence associated regulon using strains of Salmonella mutant in PhoP, has identified three Typhi-unique proteins (CdtB, HlyE and STY1499) that are not present in the genome of the wide host-range Typhimurium, and includes the first protein expression profiling of a live attenuated bacterial vaccine studied in humans (Ty800)

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Get PDF
    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification
    corecore