361 research outputs found

    Age differences in encoding-related alpha power reflect sentence comprehension difficulties

    No full text
    When sentence processing taxes verbal working memory, comprehension difficulties arise. This is specifically the case when processing resources decline with advancing adult age. Such decline likely affects the encoding of sentences into working memory, which constitutes the basis for successful comprehension. To assess age differences in encoding-related electrophysiological activity, we recorded the electroencephalogram from three age groups (24, 43, and 65 years). Using an auditory sentence comprehension task, age differences in encoding-related oscillatory power were examined with respect to the accuracy of the given response. That is, the difference in oscillatory power between correctly and incorrectly encoded sentences, yielding subsequent memory effects (SME), was compared across age groups. Across age groups, we observed an age-related SME inversion in the alpha band from a power decrease in younger adults to a power increase in older adults. We suggest that this SME inversion underlies age-related comprehension difficulties. With alpha being commonly linked to inhibitory processes, this shift may reflect a change in the cortical inhibition–disinhibition balance. A cortical disinhibition may imply enriched sentence encoding in younger adults. In contrast, resource limitations in older adults may necessitate an increase in cortical inhibition during sentence encoding to avoid an information overload. Overall, our findings tentatively suggest that age-related comprehension difficulties are associated with alterations to the electrophysiological dynamics subserving general higher cognitive functions

    The Organization of Working Memory Networks is Shaped by Early Sensory Experience

    Get PDF
    Early deafness results in crossmodal reorganization of the superior temporal cortex (STC). Here, we investigated the effect of deafness on cognitive processing. Specifically, we studied the reorganization, due to deafness and sign language (SL) knowledge, of linguistic and nonlinguistic visual working memory (WM). We conducted an fMRI experiment in groups that differed in their hearing status and SL knowledge: deaf native signers, and hearing native signers, hearing nonsigners. Participants performed a 2-back WM task and a control task. Stimuli were signs from British Sign Language (BSL) or moving nonsense objects in the form of point-light displays. We found characteristic WM activations in fronto-parietal regions in all groups. However, deaf participants also recruited bilateral posterior STC during the WM task, independently of the linguistic content of the stimuli, and showed less activation in fronto-parietal regions. Resting-state connectivity analysis showed increased connectivity between frontal regions and STC in deaf compared to hearing individuals. WM for signs did not elicit differential activations, suggesting that SL WM does not rely on modality-specific linguistic processing. These findings suggest that WM networks are reorganized due to early deafness, and that the organization of cognitive networks is shaped by the nature of the sensory inputs available during development

    Crystal structure of a thermostable Bacillus DNA polymerase l large fragment at 2.1 Å resolution

    Get PDF
    AbstractBackground: The study of DNA polymerases in the Pol l family is central to the understanding of DNA replication and repair. DNA polymerases are used in many molecular biology techniques, including PCR, which require a thermostable polymerase. In order to learn about Pol l function and the basis of thermostability, we undertook structural studies of a new thermostable DNA polymerase.Results: A DNA polymerase large, Klenow-like, fragment from a recently identified thermostable strain of Bacillus stearothermophilus (BF) was cloned, sequenced, overexpressed and characterized. Its crystal structure was determined to 2.1 Å resolution by the method of multiple isomorphous replacement.Conclusions: This structure represents the highest resolution view of a Pol l enzyme obtained to date. Comparison of the three Pol l structures reveals no compelling evidence for many of the specific interactions that have been proposed to induce thermostability, but suggests that thermostability arises from innumerable small changes distributed throughout the protein structure. The polymerase domain is highly conserved in all three proteins. The N-terminal domains are highly divergent in sequence, but retain a common fold. When present, the 3′-5′ proofreading exonuclease activity is associated with this domain. Its absence is associated with changes in catalytic residues that coordinate the divalent ions required for activity and in loops connecting homologous secondary structural elements. In BF, these changes result in a blockage of the DNA-binding cleft

    A major shift to the retention approach for forestry can help resolve some global forest sustainability issues

    Get PDF
    Approximately 85% of the global forest estate is neither formally protected nor in areas dedicated to intensive wood production (e.g., plantations). Given the spatial extent of unprotected forests, finding management approaches that will sustain their multiple environmental, economic, and cultural values and prevent their conversion to other uses is imperative. The major global challenge of native forest management is further demonstrated by ongoing steep declines in forest biodiversity and carbon stocks. Here, we suggest that an essential part of such management—supplementing the protection of large reserves and sensitive areas within forest landscapes (e.g., aquatic features)—is the adoption of the retention approach in forests where logging occurs. This ecological approach to harvesting provides for permanent retention of important selected structures (e.g., trees and decayed logs) to provide for continuity of ecosystem structure, function, and species composition in the postharvest forest. The retention approach supports the integration of environmental, economic, and cultural values and is broadly applicable to tropical, temperate, and boreal forests, adaptable to different management objectives, and appropriate in different societal settings. The widespread adoption of the retention approach would be one of the most significant changes in management practice since the onset of modern high-yield forestry.Fil: Lindenmayer, D.B.. The Australian National University,; AustraliaFil: Franklin, J.F.. University of Washington; Estados UnidosFil: Lõhmus, A.. University of Tartu; EstoniaFil: Baker, S.C.. University of Tasmania; AustraliaFil: Bauhus, J.. Albert Ludwigs University of Freiburg; AlemaniaFil: Beese, W.. University of Vancouver; CanadáFil: Brodie, A.. No especifíca;Fil: Kiehl, B.. Swedish University of Agricultural Sciences; SueciaFil: Kouki, J.. University of Eastern Finland; FinlandiaFil: Martínez Pastur, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Messier, C.. Université du Québec a Montreal; CanadáFil: Neyland, M.. University of Tasmania; AustraliaFil: Palik, B.. No especifíca;Fil: Sverdrup Thygeson, A.. Norwegian University of Life Sciences; NoruegaFil: Volney, J.. Canadian Forest Service; CanadáFil: Wayne, A.. No especifíca;Fil: Gustafsson, L.. Swedish University of Agricultural Sciences; Sueci

    A trimeric DNA polymerase complex increases the native replication processivity

    Get PDF
    DNA polymerases are essential enzymes in all domains of life for both DNA replication and repair. The primary DNA replication polymerase from Sulfolobus solfataricus (SsoDpo1) has been shown previously to provide the necessary polymerization speed and exonuclease activity to replicate the genome accurately. We find that this polymerase is able to physically associate with itself to form a trimer and that this complex is stabilized in the presence of DNA. Analytical gel filtration and electrophoretic mobility shift assays establish that initially a single DNA polymerase binds to DNA followed by the cooperative binding of two additional molecules of the polymerase at higher concentrations of the enzyme. Protein chemical crosslinking experiments show that these are specific polymerase–polymerase interactions and not just separate binding events along DNA. Isothermal titration calorimetry and fluorescence anisotropy experiments corroborate these findings and show a stoichiometry where three polymerases are bound to a single DNA substrate. The trimeric polymerase complex significantly increases both the DNA synthesis rate and the processivity of SsoDpo1. Taken together, these results suggest the presence of a trimeric DNA polymerase complex that is able to synthesize long DNA strands more efficiently than the monomeric form

    Involvement of the TPR2 subdomain movement in the activities of ϕ29 DNA polymerase

    Get PDF
    The polymerization domain of ϕ29 DNA polymerase acquires a toroidal shape by means of an arch-like structure formed by the specific insertion TPR2 (Terminal Protein Region 2) and the thumb subdomain. TPR2 is connected to the fingers and palm subdomains through flexible regions, suggesting that it can undergo conformational changes. To examine whether such changes take place, we have constructed a ϕ29 DNA polymerase mutant able to form a disulfide bond between the apexes of TPR2 and thumb to limit the mobility of TPR2. Biochemical analysis of the mutant led us to conclude that TPR2 moves away from the thumb to allow the DNA polymerase to replicate circular ssDNA. Despite the fact that no TPR2 motion is needed to allow the polymerase to use the terminal protein (TP) as primer during the initiation of ϕ29 TP–DNA replication, the disulfide bond prevents the DNA polymerase from entering the elongation phase, suggesting that TPR2 movements are necessary to allow the TP priming domain to move out from the polymerase during transition from initiation to elongation. Furthermore, the TPR2-thumb bond does not affect the equilibrium between the polymerization and exonuclease activities, leading us to propose a primer-terminus transference model between both active sites

    Instrument-based Tests for Measuring Anterior Chamber Cells in Uveitis: A Systematic Review

    Get PDF
    Purpose: New instrument-based techniques for anterior chamber (AC) cell counting can offer automation and objectivity above clinician assessment. This review aims to identify such instruments and its correlation with clinician estimates. Methods: Using standard systematic review methodology, we identified and tabulated the outcomes of studies reporting reliability and correlation between instrument-based measurements and clinician AC cell grading. Results: From 3470 studies, 6 reported correlation between an instrument-based AC cell count to clinician grading. The two instruments were optical coherence tomography (OCT) and laser flare-cell photometry (LFCP). Correlation between clinician grading and LFCP was 0.66–0.87 and 0.06–0.97 between clinician grading and OCT. OCT volume scans demonstrated correlation between 0.75 and 0.78. Line scans in the middle AC demonstrated higher correlation (0.73–0.97) than in the inferior AC (0.06–0.56). Conclusion: AC cell count by OCT and LFP can achieve high levels of correlation with clinician grading, whilst offering additional advantages of speed, automation, and objectivity

    The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein

    Get PDF
    The exosome complex is a key component of the cellular RNA surveillance machinery and is required for normal 3′ end processing of many stable RNAs. Exosome activity requires additional factors such as the Ski or TRAMP complexes to activate the complex or facilitate substrate binding. Rrp47p promotes the catalytic activity of the exosome component Rrp6p, but its precise function is unknown. Here we show that recombinant Rrp47p is expressed as an apparently hexameric complex that specifically binds structured nucleic acids. Furthermore, pull-down assays demonstrated that Rrp47p interacts directly with the N-terminal region of Rrp6p that contains the functionally uncharacterized PMC2NT domain. Strains expressing a mutant form of Rrp6p lacking the N-terminal region failed to accumulate Rrp47p at normal levels, exhibited a slow growth phenotype characteristic of rrp47-Δ mutants and showed RNA processing defects consistent with loss of Rrp47p function. These findings suggest Rrp47p promotes Rrp6p activity by facilitating binding via the PMC2NT domain to structural elements within RNA. Notably, characterized Rrp6p substrates such as the 5.8S+30 species are predicted to contain helices at their 3′ termini, while others such as intergenic or antisense cryptic unstable transcripts could potentially form extensive double-stranded molecules with overlapping mRNAs
    corecore