30 research outputs found

    Carbon dioxide fluxes increase from day to night across European streams

    Get PDF
    Globally, inland waters emit over 2 Pg of carbon per year as carbon dioxide, of which the majority originates from streams and rivers. Despite the global significance of fluvial carbon dioxide emissions, little is known about their diel dynamics. Here we present a large-scale assessment of day- and night-time carbon dioxide fluxes at the water-air interface across 34 European streams. We directly measured fluxes four times between October 2016 and July 2017 using drifting chambers. Median fluxes are 1.4 and 2.1 mmol m−2 h−1 at midday and midnight, respectively, with night fluxes exceeding those during the day by 39%. We attribute diel carbon dioxide flux variability mainly to changes in the water partial pressure of carbon dioxide. However, no consistent drivers could be identified across sites. Our findings highlight widespread day-night changes in fluvial carbon dioxide fluxes and suggest that the time of day greatly influences measured carbon dioxide fluxes across European streams

    Приемник атмосферных помех в диапазоне 5k24

    No full text

    Feasibility and reproducibility of neurochemical profile quantification in the human hippocampus at 3 T

    No full text
    Hippocampal dysfunction is known to be associated with several neurological and neuropsychiatric disorders such as Alzheimer's disease, epilepsy, schizophrenia and depression; therefore, there has been significant clinical interest in studying hippocampal neurochemistry. However, the hippocampus is a challenging region to study using (1) H MRS, hence the use of MRS for clinical research in this region has been limited. Our goal was therefore to investigate the feasibility of obtaining high-quality hippocampal spectra that allow reliable quantification of a neurochemical profile and to establish inter-session reproducibility of hippocampal MRS, including reproducibility of voxel placement, spectral quality and neurochemical concentrations. Ten healthy volunteers were scanned in two consecutive sessions using a standard clinical 3 T MR scanner. Neurochemical profiles were obtained with a short-echo (T(E) = 28 ms) semi-LASER localization sequence from a relatively small (~4 mL) voxel that covered about 62% of the hippocampal volume as calculated from segmentation of T1 -weighted images. Voxel composition was highly reproducible between sessions, with test-retest coefficients of variation (CVs) of 3.5% and 7.5% for gray and white matter volume fraction, respectively. Excellent signal-to-noise ratio (~54 based on the N-acetylaspartate (NAA) methyl peak in non-apodized spectra) and linewidths (~9 Hz for water) were achieved reproducibly in all subjects. The spectral quality allowed quantification of NAA, total choline, total creatine, myo-inositol and glutamate with high scan-rescan reproducibility (CV ≤ 6%) and quantification precision (Cramér-Rao lower bound, CRLB < 9%). Four other metabolites, including glutathione and glucose, were quantified with scan-rescan CV below 20%. Therefore, the highly optimized, short-echo semi-LASER sequence together with FASTMAP shimming substantially improved the reproducibility and number of quantifiable metabolites relative to prior reports. In addition, the between-session variation in metabolite concentrations, as well as CRLB, was lower than the between-subject variation of the concentrations for most metabolites, indicating that the method has the sensitivity to detect inter-individual differences in the healthy brain

    White matter measures correlate with essential tremor severityA pilot diffusion tensor imaging study

    No full text
    Background An evolving pathophysiological concept of essential tremor (ET) points to diffuse brain network involvement, which emphasizes the need to investigate white matter (WM) changes associated with motor symptoms of ET. Objectives To investigate ETrelated WM changes and WM correlates of tremor severity using tremor clinical rating scales and accelerometry. Methods Tractbased spatial statistics (TBSS) approach was utilized to compare 3 Tesla diffusion tensor imaging (DTI) data from 12 ET patients and 10 age and gendermatched healthy individuals. Clinical scales, tremor frequency and amplitude as measured by accelerometry were correlated with DTI data. Results ET patients demonstrated mean (MD) and radial diffusivity (RD) abnormalities in tracts involved in primary and associative motor functions such as bilateral corticospinal tracts, the superior longitudinal fascicles, and the corpus callosum but also in nonmotor regions including the inferior frontooccipital and longitudinal fascicles, cingulum bundles, anterior thalamic radiations, and uncinate fascicles. A combined tremor frequency and amplitude score correlated with RD and MD in extensive WM areas, which partially overlapped the regions that were associated with tremor frequency. No significant relationship was found between DTI measures and clinical rating scales scores. Conclusions The results show that ETrelated diffusion WM changes and their correlates with tremor severity are preferentially located in the primary and associative motor areas. In contrast, a relationship between WM was not detected with clinical rating scales. Accelerometry parameters may, therefore, serve as a potentially useful clinical measures that relate to WM deficits in ET.(VLID)480009
    corecore