100 research outputs found

    Tissue-specific and minor inter-individual variation in imprinting of <i>IGF2R</i> is a common feature of <i>Bos taurus</i> concepti and not correlated with fetal weight

    Get PDF
    The insulin-like growth factor 2 receptor (IGF2R) is essential for prenatal growth regulation and shows gene dosage effects on fetal weight that can be affected by in-vitro embryo culture. Imprinted maternal expression of murine Igf2r is well documented for all fetal tissues excluding brain, but polymorphic imprinting and biallelic expression were reported for IGF2R in human. These differences have been attributed to evolutionary changes correlated with specific reproductive strategies. However, data from species suitable for testing this hypothesis are lacking. The domestic cow (Bos taurus) carries a single conceptus with a similar gestation length as human. We identified 12 heterozygous concepti informative for imprinting studies among 68 Bos taurus fetuses at Day 80 of gestation (28% term) and found predominantly maternal IGF2R expression in all fetal tissues but brain, which escapes imprinting. Inter-individual variation in allelic expression bias, i.e. expression of the repressed paternal allele relative to the maternal allele, ranged from 4.6−8.9% in heart, 4.3−10.2% in kidney, 6.1−11.2% in liver, 4.6−15.8% in lung and 3.2−12.2% in skeletal muscle. Allelic bias for mesodermal tissues (heart, skeletal muscle) differed significantly (P&lt;0.05) from endodermal tissues (liver, lung). The placenta showed partial imprinting with allelic bias of 22.9−34.7% and differed significantly (P&lt;0.001) from all other tissues. Four informative fetuses were generated by in-vitro fertilization (IVF) with embryo culture and two individuals displayed fetal overgrowth. However, there was no evidence for changes in imprinting or DNA methylation after IVF, or correlations between allelic bias and fetal weight. In conclusion, imprinting of Bos taurus IGF2R is similar to mouse except in placenta, which could indicate an effect of reproductive strategy. Common minor inter-individual variation in allelic bias and absence of imprinting abnormalities in IVF fetuses suggest changes in IGF2R expression in overgrown fetuses could be modulated through other mechanisms than changes in imprinting

    Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by Laser Capture Microdissection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult.</p> <p>The recently developed laser capture microdissection (LCM) technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA.</p> <p>Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis.</p> <p>Results</p> <p>We developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (<it>SOHLH2</it>, <it>MAEL</it>, <it>MATER</it>, <it>VASA</it>, <it>GDF9</it>, <it>BMP15</it>) and three granulosa cell-specific genes (<it>KL</it>, <it>GATA4</it>, <it>AMH</it>).</p> <p>A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte.</p> <p>Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA.</p> <p>Conclusions</p> <p>The ovary is a complex mixture of different cell types. Distinct cell populations need therefore to be analyzed for a better understanding of their potential interactions. LCM and microarray analysis allowed us to identify novel gene expression patterns in follicular cells at different stages and in oocyte populations.</p

    Epigenetics and developmental programming of welfare and production traits in farm animals

    Get PDF
    The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the ‘developmental origins of health and disease’ or ‘DOHaD’ hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems

    3D Liquid Marble Microbioreactors Support In Vitro Maturation of Prepubertal Ovine Oocytes and Affect Expression of Oocyte-Specific Factors

    No full text
    In vitro oocyte maturation (IVM) is a well-established technique. Despite the high IVM rates obtained in most mammalian species, the developmental competence of IVM oocytes is suboptimal. The aim of this work was to evaluate the potential beneficial effects of a liquid marble microbioreactor (LM) as a 3D culture system to mature in vitro prepubertal ovine oocytes, as models of oocytes with intrinsic low competence. Cumulus–oocyte complexes of prepubertal sheep ovaries were in vitro matured in a LM system with hydrophobic fumed-silica-nanoparticles (LM group) or in standard conditions (4W control group). We evaluated: (a) maturation and (b) developmental rates following in vitro fertilization (IVF) and embryo culture; (c) expression of a panel of genes. LM and 4W groups showed similar IVM and IVF rates, while in vitro development to blastocyst stage approached significance (4W: 14.1% vs. LM: 28.3%; p = 0.066). The expression of GDF9, of enzymes involved in DNA methylation reprogramming and of the subcortical maternal complex was affected by the IVM system, while no difference was observed in terms of cell-stress-response. LM microbioreactors provide a suitable microenvironment to induce prepubertal sheep oocyte IVM and should be considered to enhance the developmental competence of oocytes with reduced potential also in other species, including humans

    New Challenges in Cryopreservation: A Reproductive Perspective

    No full text
    Cryopreservation is a fundamental procedure to preserve the structure and function of cells and tissues by storing them at low temperatures for long periods [...
    corecore