313 research outputs found

    Abnormally high acoustic sea-floor backscatter patterns in active methane venting areas, Dnepr paleo-delta, northwestern Black Sea

    Get PDF
    During the 58th and 60th cruise of R.V. Vodyanitskiy, conducted in the framework of the EU-funded CRIMEA project, almost 3000 active bubble-releasing seeps were detected with an adapted split-beam echosounder within the 1540 km2 of the studied Dnepr paleo-delta area. The distribution of these active seeps is not random, but is controlled by morphology, by underlying stratigraphy and sediment properties, and by the presence of gas hydrates acting as a seal and preventing upward migrating gas to be released as bubbles in the water column (Naudts et al., 2006).Here we present the relation between acoustic sea-floor backscatter and the distribution of more than 600 active methane seeps detected within a small area on the continental shelf. This study is further sustained by visual sea-floor observations, highresolution seismic data, pore-water data and grain-size analysis.The backscatter data indicate that seeps are generally not located within highbackscatter areas, but rather surround them. Most seeps are located within shallow pockmarks which are characterized by medium-backscatter values, whereas deeper pockmarks have high-backscatter values with much lower seep densities. The seismic data show the presence of a distinct gas front (free gas); shallow gas fronts correspond to high- and medium-backscatter areas, which are associated with gas seeps, whereas deep gas fronts correspond to low-backscatter areas without seeps. The presence of shallow gas is also confirmed by the pore-water data, showing higher amounts of dissolved-methane concentrations for areas with medium- to high-backscatter values.Visual observations showed that the high-backscatter areas correspond to white Beggiatoa mats. These thiotrophic bacterial mats are indicators for the anaerobic oxidation of methane (AOM) which results in the formation of methane-derived carbonates (MDAC’s). AOM was also confirmed by the pore-water data. No clear correlation with grain-size distribution could be established.Based on the integration of all datasets, we conclude that the observed highbackscatter anomalies are a result of methane-derived authigenic carbonates (MDAC’s). The carbonate formation appears to lead to a gradual (self)-sealing of the seeps (Hovland, 2002), followed by a relocation of the bubble-releasing holes. Furthermore, the degree of MDAC-formation is directly linked to the backscatter intensity and seep activity which makes it possible to use the backscatter strength as a proxy for the seep activity and distribution

    Anomalous seafloor backscatter patterns in methane venting areas, Dnepr paleo-delta, NW Black Sea

    Get PDF
    The relation between acoustic seafloor backscatter and seep distribution is examined by integrating multibeam backscatter data and seep locations detected by single-beam echosounder. This study is further supported by side scan sonar recordings, high-resolution 5 kHz seismic data, pore-water analysis, grain-size analysis and visual seafloor observations. The datasets were acquired during the 2003 and 2004 expeditions of the EC-funded CRIMEA project in the Dnepr paleo-delta area, northwestern Black Sea. More than 600 active methane seeps were hydro-acoustically detected within a small (3.96 km by 3.72 km) area on the continental shelf of the Dnepr paleo-delta in water depths ranging from -72 m to -156 m. Multibeam and side scan sonar recordings show backscatter patterns that are clearly associated with seepage or with a present dune area. Seeps generally occur within medium- to high backscatter areas which often coincide with pockmarks. High-resolution seismic data reveal the presence of an undulating gas front, i.e. the top of the free gas in the subsurface, which domes up towards and intersects the seafloor at locations where gas seeps and medium- to high-backscatter values are detected. Pore-water analysis of 4 multi-cores, taken at different backscatter intensity sites, shows a clear correlation between backscatter intensity and dissolved methane fluxes. All analyzed chemical species indicate increasing anaerobic oxidation of methane (AOM) from medium- to high-backscatter locations. This is confirmed by visual seafloor observations, showing bacterial mats and authigenic carbonates formed by AOM. Grain-size analysis of the 4 multi-cores only reveals negligible variations between the different backscatter sites. Integration of all datasets leads to the conclusion that the observed backscatter patterns are the result of ongoing methane seepage and the precipitation of methane-derived authigenic carbonates (MDACs) caused by AOM. The carbonate formation also appears to lead to a gradual (self-)sealing of the seeps by cementing fluid pathways/horizons followed by a relocation of the bubble-releasing locations

    Behavioral Disorders: A Nutritional Checklist for the Educational Practitioner

    Get PDF
    Millions of dollars are spent annually on special educational programs for children whose severe behavior disorders prevent them from participating in the regular school setting despite average or above average intellectual capacity. A growing body of research indicates that some of these behavior disorders are related to nutritional problems. (Pfeiffer and Iliev 1972; Kittler 1973; Mayron 1979; and Buckley 1977), and many clinicians support the view that no matter what the etiology of behavioral disorders, nutritional programs can improve the baseline data on medical, social and intellectual achievement, and on personality measures (Palmer 1978). Our purpose here is to present a checklist of physical symptoms associated with dietary problems related to nonadaptive behavior in order to help teachers determine if a medical-nutritional referral is appropriate

    Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage

    Get PDF
    This paper reviews research into the potential environmental impacts of leakage from geological storage of CO2 since the publication of the IPCC Special Report on Carbon Dioxide Capture and Storage in 2005. Possible impacts are considered on onshore (including drinking water aquifers) and offshore ecosystems. The review does not consider direct impacts on man or other land animals from elevated atmospheric CO2 levels. Improvements in our understanding of the potential impacts have come directly from CO2 storage research but have also benefitted from studies of ocean acidification and other impacts on aquifers and onshore near surface ecosystems. Research has included observations at natural CO2 sites, laboratory and field experiments and modelling. Studies to date suggest that the impacts from many lower level fault- or well-related leakage scenarios are likely to be limited spatially and temporarily and recovery may be rapid. The effects are often ameliorated by mixing and dispersion of the leakage and by buffering and other reactions; potentially harmful elements have rarely breached drinking water guidelines. Larger releases, with potentially higher impact, would be possible from open wells or major pipeline leaks but these are of lower probability and should be easier and quicker to detect and remediate

    Surface gas measurements and related studies for the characterization and monitoring of geological CO2 storage sites; experiences at Weyburn and in Salah.

    Get PDF
    Preliminary baseline soil gas data collected in the summer and autumn of 2001 above the Phase 1A injection area of the EnCana Enhanced Oil Recovery project at the Weyburn oilfield in south Saskatchewan was presented at GHGT-6 in Kyoto. Data can now be presented for all three years of the study with conclusions, the predominant one being that the major controls on soil gas levels are seasonal and meteorological with no indications of leakage from depth. In the autumns of 2002 and 2003 further in situ monitoring of CO2, CO2 flux, O2, CH4, radon (222Rn) and thoron (220Rn) was carried out. Soil gas samples were also collected for laboratory analysis of helium, permanent gases, sulphur species and light hydrocarbons. All sampling was repeated over the same 360 point sampling grid and more detailed profiles for both follow-up years. Marked changes in CO2 levels (especially flux) for each of the three-year datasets indicate changes in surface conditions, rather than CO2 from a deeper source. The radon and thoron data was found to be similar for the three years but appears to vary in response to drift composition, and seasonal effects, rather than migration from a deep source. In 2003 further work was agreed in addition to the main grid and profile data. A control area was sampled for the same suite of gases, 10km to the northwest of the oil field. It included similar topography, land use and drift composition to the main sampling grid. There were 35 sample locations on a 7 x 5 point grid with 100m spacing and two additional sites. Early conclusions indicate that the soil gas results in the control area are very similar to those from the main grid, vindicating control site selection and further supporting a lack of deeply sourced CO2 over the injection area. Along with the control site, five zones of possible CO2 leakage were also surveyed and sampled. Two cross a river lineament that may be associated with deep faulting, two were abandoned oil well sites and one site overlays a deep salt dissolution feature. (Unfortunately CO2 flux and gamma measurements were not carried out at these sites.) A northeast/southwest trending lineament, just north of the main grid, was sampled along two profiles perpendicular to the feature, with an increased density of sampling over the feature. The feature generally followed an incised river valley and anomalous CO2 was only detected on the valley floor, where it would be expected as there was lush vegetation in this zone. There were no coincident anomalies for other gases. Soils around two abandoned wells were also sampled. A 16-site grid was surveyed around each well. One well had been completely abandoned and the other was suspended due to failed casing. Such boreholes represent possible points of weakness that may be routes for CO2 migration. The well with failed casing had weakly anomalous CO2 locally to the south, again unmatched for other gases. The fully abandoned well had background CO2 values. Two perpendicular profiles of 10 sites at 25m spacing were sampled for soil gas over the mapped centre of the dissolution feature. Background values were obtained. In 2003 two vertical profiles were performed both indicating an increase in CO2 to a depth maximum of 1.80m; this increase is matched by a corresponding decrease only in O2, indicating biological respiration. Radon concentration indicated no anomalies. Portable gamma spectrometric data was collected in 2003 over the west-centre area of the grid, the profiles and over the control grid. The composition of soils from both areas was found to be very similar.PublishedBerkeley, California4.5. Degassamento naturaleope

    Fluid balance and renal replacement therapy initiation strategy : a secondary analysis of the STARRT-AKI trial

    Get PDF
    Background: Among critically ill patients with acute kidney injury (AKI), earlier initiation of renal replacement therapy (RRT) may mitigate fluid accumulation and confer better outcomes among individuals with greater fluid overload at randomization.Methods: We conducted a pre-planned post hoc analysis of the STandard versus Accelerated initiation of Renal Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial. We evaluated the effect of accelerated RRT initiation on cumulative fluid balance over the course of 14 days following randomization using mixed models after censoring for death and ICU discharge. We assessed the modifying effect of baseline fluid balance on the impact of RRT initiation strategy on key clinical outcomes. Patients were categorized in quartiles of baseline fluid balance, and the effect of accelerated versus standard RRT initiation on clinical outcomes was assessed in each quartile using risk ratios (95% CI) for categorical variables and mean differences (95% CI) for continuous variables.Results: Among 2927 patients in the modified intention-to-treat analysis, 2738 had available data on baseline fluid balance and 2716 (92.8%) had at least one day of fluid balance data following randomization. Over the subsequent 14 days, participants allocated to the accelerated strategy had a lower cumulative fluid balance compared to those in the standard strategy (4509 (- 728 to 11,698) versus 5646 (0 to 13,151) mL, p = 0.03). Accelerated RRT initiation did not confer greater 90-day survival in any of the baseline fluid balance quartiles (quartile 1: RR 1.11 (95% CI 0.92 to 1.34), quartile 2: RR 1.03 (0.87 to 1.21); quartile 3: RR 1.08 (95% CI 0.91 to 1.27) and quartile 4: RR 0.87 (95% CI 0.73 to 1.03), p value for trend 0.08).Conclusions: Earlier RRT initiation in critically ill patients with AKI conferred a modest attenuation of cumulative fluid balance. Nonetheless, among patients with greater fluid accumulation at randomization, accelerated RRT initiation did not have an impact on all-cause mortality.Peer reviewe

    Looking for leakage or monitoring for public assurance?

    Get PDF
    Monitoring is a regulatory requirement for all carbon dioxide capture and geological storage (CCS) projects to verify containment of injected carbon dioxide (CO2) within a licensed geological storage complex. Carbon markets require CO2 storage to be verified. The public wants assurances CCS projects will not cause any harm to themselves, the environment or other natural resources. In the unlikely event that CO2 leaks from a storage complex, and into groundwater, to the surface, atmosphere or ocean, then monitoring methods will be required to locate, assess and quantify the leak, and to inform the community about the risks and impacts on health, safety and the environment. This paper considers strategies to improve the efficiency of monitoring the large surface area overlying onshore storage complexes. We provide a synthesis of findings from monitoring for CO2 leakage at geological storage sites both natural and engineered, and from monitoring controlled releases of CO2 at four shallow release facilities – ZERT (USA), Ginninderra (Australia), Ressacada (Brazil) and CO2 field lab (Norway)

    CO2 soil flux baseline at the technological development plant for CO2 injection at Hontomin (Burgos, Spain)

    Get PDF
    From the end of 2013 and during the following two years, 20 kt of CO2sc are planned to be injected in a saline reservoir (1500 m depth) at the Hontomín site (NE Spain). The target aquifers are Lower Jurassic limestone formations which are sealed by Lower Cretaceous clay units at the Hontomín site (NE Spain). The injection of CO2 is part of the activities committed in the Technology Development phase of the EC-funded OXYCFB300 project (European Energy Program for Recovery – EEPR, http://www.compostillaproject.eu), which include CO2 injection strategies, risk assessment, and testing and validating monitoring methodologies and techniques. Among the monitoring works, the project is intended to prove that present-day technology is able to monitor the evolution of injected CO2 in the reservoir and to detect potential leakage. One of the techniques is the measurement of CO2 flux at the soil–atmosphere interface, which includes campaigns before, during and after the injection operations. In this work soil CO2 flux measurements in the vicinity of oil borehole, drilled in the eighties and named H-1 to H-4, and injection and monitoring wells were performed using an accumulation chamber equipped with an IR sensor. Seven surveys were carried out from November 2009 to summer 2011. More than 4000 measurements were used to determine the baseline flux of CO2 and its seasonal variations. The measured values were low (from 5 to 13 g m−2 day−1) and few outliers were identified, mainly located close to the H-2 oil well. Nevertheless, these values cannot be associated to a deep source of CO2, being more likely related to biological processes, i.e. soil respiration. No anomalies were recognized close to the deep fault system (Ubierna Fault) detected by geophysical investigations. There, the CO2 flux is indeed as low as other measurement stations. CO2 fluxes appear to be controlled by the biological activity since the lowest values were recorded during autumn-winter seasons and they tend to increase in warm periods. Two reference CO2 flux values (UCL50 of 5 g m−2 d−1 for non-ploughed areas in autumn–winter seasons and 3.5 and 12 g m−2 d−1 for in ploughed and non-ploughed areas, respectively, in spring–summer time, and UCL99 of 26 g m−2 d−1 for autumn–winter in not-ploughed areas and 34 and 42 g m−2 d−1 for spring–summer in ploughed and not-ploughed areas, respectively) were calculated. Fluxes higher than these reference values could be indicative of possible leakage during the operational and post-closure stages of the storage project
    • 

    corecore