73 research outputs found

    The role of beta-adrenergic system remodeling in human heart failure: A mechanistic investigation

    Full text link
    [EN] ß-adrenergic receptor antagonists (ß-blockers) are extensively used to improve cardiac performance in heart failure (HF), but the electrical improvements with these clinical treatments are not fully understood. The aim of this study was to analyze the electrophysiological effects of ß-adrenergic system remodeling in heart failure with reduced ejection fraction and the underlying mechanisms. We used a combined mathematical model that integrated ß-adrenergic signaling with electrophysiology and calcium cycling in human ventricular myocytes. HF remodeling, both in the electrophysiological and signaling systems, was introduced to quantitatively analyze changes in electrophysiological properties due to the stimulation of ß-adrenergic receptors in failing myocytes. We found that the inotropic effect of ß-adrenergic stimulation was reduced in HF due to the altered Ca2+ dynamics resulting from the combination of structural, electrophysiological and signaling remodeling. Isolated cells showed proarrhythmic risk after sympathetic stimulation because early afterdepolarizations appeared, and the vulnerability was greater in failing myocytes. When analyzing coupled cells, ß-adrenergic stimulation reduced transmural repolarization gradients between endocardium and epicardium in normal tissue, but was less effective at reducing these gradients after HF remodeling. The comparison of the selective activation of ß-adrenergic isoforms revealed that the response to ß2-adrenergic receptors stimulation was blunted in HF while ß1-adrenergic receptors downstream effectors regulated most of the changes observed after sympathetic stimulation. In conclusion, this study was able to reproduce an altered ß-adrenergic activity on failing myocytes and to explain the mechanisms involved. The derived predictions could help in the treatment of HF and guide in the design of future experiments.This work was partially supported by the "Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016" from the Ministerio de Economía, Industria y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER) DPI2016-75799-R (AEI/FEDER, UE), by the "Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020" from the Ministerio de Ciencia e Innovación y Universidades (PID2019-104356RB-C41/AEI/10.13039/5011000110 33), and by the "Programa de Ayudas de Investigación y Desarrollo (PAID-01-17)" from the Universitat Politècnica de València.Mora-Fenoll, MT.; Gong, JQX.; Sobie, EA.; Trenor Gomis, BA. (2021). The role of beta-adrenergic system remodeling in human heart failure: A mechanistic investigation. Journal of Molecular and Cellular Cardiology. 153:14-25. https://doi.org/10.1016/j.yjmcc.2020.12.004S1425153Coronel, R., Wilders, R., Verkerk, A. O., Wiegerinck, R. F., Benoist, D., & Bernus, O. (2013). Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1832(12), 2432-2441. doi:10.1016/j.bbadis.2013.04.002Antoons, G., Oros, A., Bito, V., Sipido, K. R., & Vos, M. A. (2007). Cellular basis for triggered ventricular arrhythmias that occur in the setting of compensated hypertrophy and heart failure: considerations for diagnosis and treatment. Journal of Electrocardiology, 40(6), S8-S14. doi:10.1016/j.jelectrocard.2007.05.022Johnson, D. M., & Antoons, G. (2018). Arrhythmogenic Mechanisms in Heart Failure: Linking β-Adrenergic Stimulation, Stretch, and Calcium. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01453Saucerman, J. J., & McCulloch, A. D. (2004). Mechanistic systems models of cell signaling networks: a case study of myocyte adrenergic regulation. Progress in Biophysics and Molecular Biology, 85(2-3), 261-278. doi:10.1016/j.pbiomolbio.2004.01.005A. William Tank, D. Lee Wong, Peripheral and Central Effects of Circulating Catecholamines, in: Compr. Physiol., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2014: pp. 1–15. doi:https://doi.org/10.1002/cphy.c140007.Lohse, M. J., Engelhardt, S., & Eschenhagen, T. (2003). What Is the Role of β-Adrenergic Signaling in Heart Failure? Circulation Research, 93(10), 896-906. doi:10.1161/01.res.0000102042.83024.caPort, J. D., & Bristow, M. R. (2001). Altered Beta-adrenergic Receptor Gene Regulation and Signaling in Chronic Heart Failure. Journal of Molecular and Cellular Cardiology, 33(5), 887-905. doi:10.1006/jmcc.2001.1358Bozkurt, B. (2018). What Is New in Heart Failure Management in 2017? Update on ACC/AHA Heart Failure Guidelines. Current Cardiology Reports, 20(6). doi:10.1007/s11886-018-0978-7Kubon, C., Mistry, N. B., Grundvold, I., Halvorsen, S., Kjeldsen, S. E., & Westheim, A. S. (2011). The role of beta-blockers in the treatment of chronic heart failure. Trends in Pharmacological Sciences, 32(4), 206-212. doi:10.1016/j.tips.2011.01.006S. Chatterjee, G. Biondi-Zoccai, A. Abbate, F. D'Ascenzo, D. Castagno, B. Van Tassell, D. Mukherjee, E. Lichstein, Benefits of β blockers in patients with heart failure and reduced ejection fraction: network meta-analysis., BMJ. 346 (2013) f55. doi:https://doi.org/10.1136/bmj.f55.Baker, J. G. (2005). The selectivity of β -adrenoceptor antagonists at the human β 1, β 2 and β 3 adrenoceptors. British Journal of Pharmacology, 144(3), 317-322. doi:10.1038/sj.bjp.0706048Poole-Wilson, P. A., Swedberg, K., Cleland, J. G., Di Lenarda, A., Hanrath, P., Komajda, M., … Skene, A. (2003). Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. The Lancet, 362(9377), 7-13. doi:10.1016/s0140-6736(03)13800-7Heng, M. K. (1990). Beta, partial agonists to treat heart failure: Effects of xamoterol upon cardiac function and clinical status. Clinical Cardiology, 13(3), 171-176. doi:10.1002/clc.4960130305Soltis, A. R., & Saucerman, J. J. (2010). Synergy between CaMKII Substrates and β-Adrenergic Signaling in Regulation of Cardiac Myocyte Ca2+ Handling. Biophysical Journal, 99(7), 2038-2047. doi:10.1016/j.bpj.2010.08.016Rozier, K., & Bondarenko, V. E. (2017). Distinct physiological effects of β1- and β2-adrenoceptors in mouse ventricular myocytes: insights from a compartmentalized mathematical model. American Journal of Physiology-Cell Physiology, 312(5), C595-C623. doi:10.1152/ajpcell.00273.2016Heijman, J., Volders, P. G. A., Westra, R. L., & Rudy, Y. (2011). Local control of β-adrenergic stimulation: Effects on ventricular myocyte electrophysiology and Ca2+-transient. Journal of Molecular and Cellular Cardiology, 50(5), 863-871. doi:10.1016/j.yjmcc.2011.02.007O’Hara, T., & Rudy, Y. (2012). Arrhythmia formation in subclinical («silent») long QT syndrome requires multiple insults: Quantitative mechanistic study using the KCNQ1 mutation Q357R as example. Heart Rhythm, 9(2), 275-282. doi:10.1016/j.hrthm.2011.09.066Gong, J. Q. X., Susilo, M. E., Sher, A., Musante, C. J., & Sobie, E. A. (2020). Quantitative analysis of variability in an integrated model of human ventricular electrophysiology and β-adrenergic signaling. Journal of Molecular and Cellular Cardiology, 143, 96-106. doi:10.1016/j.yjmcc.2020.04.009Sanchez-Alonso, J. L., Bhargava, A., O’Hara, T., Glukhov, A. V., Schobesberger, S., Bhogal, N., … Gorelik, J. (2016). Microdomain-Specific Modulation of L-Type Calcium Channels Leads to Triggered Ventricular Arrhythmia in Heart Failure. Circulation Research, 119(8), 944-955. doi:10.1161/circresaha.116.308698Lang, D., Holzem, K., Kang, C., Xiao, M., Hwang, H. J., Ewald, G. A., … Efimov, I. R. (2015). Arrhythmogenic Remodeling of β 2 Versus β 1 Adrenergic Signaling in the Human Failing Heart. Circulation: Arrhythmia and Electrophysiology, 8(2), 409-419. doi:10.1161/circep.114.002065Passini, E., Trovato, C., Morissette, P., Sannajust, F., Bueno‐Orovio, A., & Rodriguez, B. (2019). Drug‐induced shortening of the electromechanical window is an effective biomarker for in silico prediction of clinical risk of arrhythmias. British Journal of Pharmacology, 176(19), 3819-3833. doi:10.1111/bph.14786Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2Glukhov, A. V., Fedorov, V. V., Lou, Q., Ravikumar, V. K., Kalish, P. W., Schuessler, R. B., … Efimov, I. R. (2010). Transmural Dispersion of Repolarization in Failing and Nonfailing Human Ventricle. Circulation Research, 106(5), 981-991. doi:10.1161/circresaha.109.204891Antzelevitch, C. (2010). M Cells in the Human Heart. Circulation Research, 106(5), 815-817. doi:10.1161/circresaha.109.216226Bristow, M. R., Ginsburg, R., Umans, V., Fowler, M., Minobe, W., Rasmussen, R., … Jamieson, S. (1986). Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circulation Research, 59(3), 297-309. doi:10.1161/01.res.59.3.297Bers, D. M. (2002). Cardiac excitation–contraction coupling. Nature, 415(6868), 198-205. doi:10.1038/415198aVeldkamp, M. (2001). Norepinephrine induces action potential prolongation and early afterdepolarizations in ventricular myocytes isolated from human end-stage failing hearts. European Heart Journal, 22(11), 955-963. doi:10.1053/euhj.2000.2499Wang, Y., Yuan, J., Qian, Z., Zhang, X., Chen, Y., Hou, X., & Zou, J. (2015). β2 adrenergic receptor activation governs cardiac repolarization and arrhythmogenesis in a guinea pig model of heart failure. Scientific Reports, 5(1). doi:10.1038/srep07681Lowe, M. D. (2001). beta2 Adrenergic receptors mediate important electrophysiological effects in human ventricular myocardium. Heart, 86(1), 45-51. doi:10.1136/heart.86.1.45Nikolaev, V. O., Bünemann, M., Schmitteckert, E., Lohse, M. J., & Engelhardt, S. (2006). Cyclic AMP Imaging in Adult Cardiac Myocytes Reveals Far-Reaching β 1 -Adrenergic but Locally Confined β 2 -Adrenergic Receptor–Mediated Signaling. Circulation Research, 99(10), 1084-1091. doi:10.1161/01.res.0000250046.69918.d5A.D. Loucks, T. O'Hara, N.A. Trayanova, Degradation of T-tubular microdomains and altered cAMP Compartmentation Lead to emergence of Arrhythmogenic triggers in heart failure Myocytes: an in silico study, Front. Physiol. 9 (2018) 1–12. doi:https://doi.org/10.3389/fphys.2018.01737.Rocchetti, M., Alemanni, M., Mostacciuolo, G., Barassi, P., Altomare, C., Chisci, R., … Zaza, A. (2008). Modulation of Sarcoplasmic Reticulum Function by PST2744 [Istaroxime; (E,Z)-3-((2-Aminoethoxy)imino) Androstane-6,17-dione Hydrochloride)] in a Pressure-Overload Heart Failure Model. Journal of Pharmacology and Experimental Therapeutics, 326(3), 957-965. doi:10.1124/jpet.108.138701Dong, X., & Thomas, D. D. (2014). Time-resolved FRET reveals the structural mechanism of SERCA–PLB regulation. Biochemical and Biophysical Research Communications, 449(2), 196-201. doi:10.1016/j.bbrc.2014.04.166Lucia, C. de, Eguchi, A., & Koch, W. J. (2018). New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Frontiers in Pharmacology, 9. doi:10.3389/fphar.2018.00904Ungerer, M., Böhm, M., Elce, J. S., Erdmann, E., & Lohse, M. J. (1993). Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation, 87(2), 454-463. doi:10.1161/01.cir.87.2.454Böhm, M., Eschenhagen, T., Gierschik, P., Larisch, K., Lensche, H., Mende, U., … Erdmann, E. (1994). Radioimmunochemical Quantification of Giα in Right and Left Vehicles from Patients with Ischaemic and Dilated Cardiomyopathy and Predominant Left Ventricular Failure. Journal of Molecular and Cellular Cardiology, 26(2), 133-149. doi:10.1006/jmcc.1994.1017Woo, A. Y.-H., Song, Y., Xiao, R.-P., & Zhu, W. (2014). Biased β2-adrenoceptor signalling in heart failure: pathophysiology and drug discovery. British Journal of Pharmacology, 172(23), 5444-5456. doi:10.1111/bph.12965Schobesberger, S., Wright, P., Tokar, S., Bhargava, A., Mansfield, C., Glukhov, A. V., … Gorelik, J. (2017). T-tubule remodelling disturbs localized β2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure. Cardiovascular Research, 113(7), 770-782. doi:10.1093/cvr/cvx074Bhogal, N., Hasan, A., & Gorelik, J. (2018). The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains. Journal of Cardiovascular Development and Disease, 5(2), 25. doi:10.3390/jcdd5020025DeSantiago, J., Ai, X., Islam, M., Acuna, G., Ziolo, M. T., Bers, D. M., & Pogwizd, S. M. (2008). Arrhythmogenic Effects of β 2 -Adrenergic Stimulation in the Failing Heart Are Attributable to Enhanced Sarcoplasmic Reticulum Ca Load. Circulation Research, 102(11), 1389-1397. doi:10.1161/circresaha.107.169011Altschuld, R. A., Starling, R. C., Hamlin, R. L., Billman, G. E., Hensley, J., Castillo, L., … Lakatta, E. G. (1995). Response of Failing Canine and Human Heart Cells to β 2 -Adrenergic Stimulation. Circulation, 92(6), 1612-1618. doi:10.1161/01.cir.92.6.1612V.O. Nikolaev, A. Moshkov, A.R. Lyon, M. Miragoli, P. Novak, H. Paur, M.J. Lohse, Y.E. Korchev, S.E. Harding, J. Gorelik, Beta2-Adrenergic Receptor Redistribution in Heart Failure Changes cAMP Compartmentation, Science (80-. ). 327 (2010) 1653–1657. doi:https://doi.org/10.1126/science.1185988.Bryant, S. M., Kong, C. H. T., Cannell, M. B., Orchard, C. H., & James, A. F. (2018). Loss of caveolin-3-dependent regulation of ICa in rat ventricular myocytes in heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 314(3), H521-H529. doi:10.1152/ajpheart.00458.2017Wright, P. T., Nikolaev, V. O., O’Hara, T., Diakonov, I., Bhargava, A., Tokar, S., … Gorelik, J. (2014). Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. Journal of Molecular and Cellular Cardiology, 67, 38-48. doi:10.1016/j.yjmcc.2013.12.003Surdo, N. C., Berrera, M., Koschinski, A., Brescia, M., Machado, M. R., Carr, C., … Zaccolo, M. (2017). FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nature Communications, 8(1). doi:10.1038/ncomms15031Neumann, J., Eschenhagen, T., Jones, L. R., Linck, B., Schmitz, W., Scholz, H., & Zimmermann, N. (1997). Increased Expression of Cardiac Phosphatases in Patients with End-stage Heart Failure. Journal of Molecular and Cellular Cardiology, 29(1), 265-272. doi:10.1006/jmcc.1996.0271El-Armouche, A. (2004). Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts. Cardiovascular Research, 61(1), 87-93. doi:10.1016/j.cardiores.2003.11.005MacDougall, D. A., Agarwal, S. R., Stopford, E. A., Chu, H., Collins, J. A., Longster, A. L., … Calaghan, S. (2012). Caveolae compartmentalise β2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte. Journal of Molecular and Cellular Cardiology, 52(2), 388-400. doi:10.1016/j.yjmcc.2011.06.014Calaghan, S., Kozera, L., & White, E. (2008). Compartmentalisation of cAMP-dependent signalling by caveolae in the adult cardiac myocyte. Journal of Molecular and Cellular Cardiology, 45(1), 88-92. doi:10.1016/j.yjmcc.2008.04.004Akar, F. G., & Rosenbaum, D. S. (2003). Transmural Electrophysiological Heterogeneities Underlying Arrhythmogenesis in Heart Failure. Circulation Research, 93(7), 638-645. doi:10.1161/01.res.0000092248.59479.aeAntzelevitch, C. (2007). Heterogeneity and cardiac arrhythmias: An overview. Heart Rhythm, 4(7), 964-972. doi:10.1016/j.hrthm.2007.03.036Briasoulis, A., Palla, M., & Afonso, L. (2015). Meta-Analysis of the Effects of Carvedilol Versus Metoprolol on All-Cause Mortality and Hospitalizations in Patients With Heart Failure. The American Journal of Cardiology, 115(8), 1111-1115. doi:10.1016/j.amjcard.2015.01.545Shen, M. J., & Zipes, D. P. (2014). Role of the Autonomic Nervous System in Modulating Cardiac Arrhythmias. Circulation Research, 114(6), 1004-1021. doi:10.1161/circresaha.113.302549Grandi, E., & Ripplinger, C. M. (2019). Antiarrhythmic mechanisms of beta blocker therapy. Pharmacological Research, 146, 104274. doi:10.1016/j.phrs.2019.104274Nasr, I. A., Bouzamondo, A., Hulot, J.-S., Dubourg, O., Le Heuzey, J.-Y., & Lechat, P. (2007). Prevention of atrial fibrillation onset by beta-blocker treatment in heart failure: a meta-analysis. European Heart Journal, 28(4), 457-462. doi:10.1093/eurheartj/ehl484Tomek, J., Hao, G., Tomková, M., Lewis, A., Carr, C., Paterson, D. J., … Herring, N. (2019). β-Adrenergic Receptor Stimulation and Alternans in the Border Zone of a Healed Infarct: An ex vivo Study and Computational Investigation of Arrhythmogenesis. Frontiers in Physiology, 10. doi:10.3389/fphys.2019.00350Vinge, L. E., Raake, P. W., & Koch, W. J. (2008). Gene Therapy in Heart Failure. Circulation Research, 102(12), 1458-1470. doi:10.1161/circresaha.108.173195Engelhardt, S., Hein, L., Wiesmann, F., & Lohse, M. J. (1999). Progressive hypertrophy and heart failure in  1-adrenergic receptor transgenic mice. Proceedings of the National Academy of Sciences, 96(12), 7059-7064. doi:10.1073/pnas.96.12.7059Rengo, G., Perrone-Filardi, P., Femminella, G. D., Liccardo, D., Zincarelli, C., de Lucia, C., … Leosco, D. (2012). Targeting the β-Adrenergic Receptor System Through G-Protein–Coupled Receptor Kinase 2: A New Paradigm for Therapy and Prognostic Evaluation in Heart Failure. Circulation: Heart Failure, 5(3), 385-391. doi:10.1161/circheartfailure.112.966895Xiang, Y. K. (2011). Compartmentalization of β-Adrenergic Signals in Cardiomyocytes. Circulation Research, 109(2), 231-244. doi:10.1161/circresaha.110.231340Momose, M., Tyndale-Hines, L., Bengel, F. M., & Schwaiger, M. (2001). How heterogeneous is the cardiac autonomic innervation? Basic Research in Cardiology, 96(6), 539-546. doi:10.1007/s00395017000

    Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts

    Full text link
    [EN] Heart failure (HF) is characterized, among other factors, by a progressive loss of contractile function and by the formation of an arrhythmogenic substrate, both aspects partially related to intracellular Ca2+ cycling disorders. In failing hearts both electrophysiological and structural remodeling, including fibroblast proliferation, contribute to changes in Ca2+ handling which promote the appearance of Ca2+ alternans (Ca-alt). Ca-alt in turn give rise to repolarization alternans, which promote dispersion of repolarization and contribute to reentrant activity. The computational analysis of the incidence of Ca2+ and/or repolarization alternans under HF conditions in the presence of fibroblasts could provide a better understanding of the mechanisms leading to HF arrhythmias and contractile function disorders. Methods and findings The goal of the present study was to investigate in silico the mechanisms leading to the formation of Ca-alt in failing human ventricular myocytes and tissues with disperse fibroblast distributions. The contribution of ionic currents variability to alternans formation at the cellular level was analyzed and the results show that in normal ventricular tissue, altered Ca2+ dynamics lead to Ca-alt, which precede APD alternans and can be aggravated by the presence of fibroblasts. Electrophysiological remodeling of failing tissue alone is sufficient to develop alternans. The incidence of alternans is reduced when fibroblasts are present in failing tissue due to significantly depressed Ca2+ transients. The analysis of the underlying ionic mechanisms suggests that Ca-alt are driven by Ca2+-handling protein and Ca2+ cycling dysfunctions in the junctional sarcoplasmic reticulum and that their contribution to alternans occurrence depends on the cardiac remodeling conditions and on myocyte-fibroblast interactions. Conclusion It can thus be concluded that fibroblasts modulate the formation of Ca-alt in human ventricular tissue subjected to heart failure-related electrophysiological remodeling. Pharmacological therapies should thus consider the extent of both the electrophysiological and structural remodeling present in the failing heart.This work was partially supported by the Plan Estatal de Investigación Científica y Técnica y de Innovación 2013 2016" from the Ministerio de Economía, Industria y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER) DPI2016-75799-R (AEI/FEDER, UE), and by the Programa de Ayudas de Investigación y Desarrollo (PAID-01-17) from the Universitat Politècnica de València. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Mora-Fenoll, MT.; Gomez, JF.; Morley, G.; Ferrero De Loma-Osorio, JM.; Trenor Gomis, BA. (2019). Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts. PLoS ONE. 14(6):1-19. https://doi.org/10.1371/journal.pone.0217993S119146Glukhov, A. V., Fedorov, V. V., Kalish, P. W., Ravikumar, V. K., Lou, Q., Janks, D., … Efimov, I. R. (2012). Conduction Remodeling in Human End-Stage Nonischemic Left Ventricular Cardiomyopathy. Circulation, 125(15), 1835-1847. doi:10.1161/circulationaha.111.047274Lou, Q., Fedorov, V. V., Glukhov, A. V., Moazami, N., Fast, V. G., & Efimov, I. R. (2011). Transmural Heterogeneity and Remodeling of Ventricular Excitation-Contraction Coupling in Human Heart Failure. Circulation, 123(17), 1881-1890. doi:10.1161/circulationaha.110.989707Gomez, J. F., Cardona, K., & Trenor, B. (2015). Lessons learned from multi-scale modeling of the failing heart. Journal of Molecular and Cellular Cardiology, 89, 146-159. doi:10.1016/j.yjmcc.2015.10.016Kohl, P., & Gourdie, R. G. (2014). Fibroblast–myocyte electrotonic coupling: Does it occur in native cardiac tissue? Journal of Molecular and Cellular Cardiology, 70, 37-46. doi:10.1016/j.yjmcc.2013.12.024Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of Cardiac Electrical Activity Over Extended Distances by Fibroblasts of Cardiac Origin. Circulation Research, 93(5), 421-428. doi:10.1161/01.res.0000089258.40661.0cKohl, P., Camelliti, P., Burton, F. L., & Smith, G. L. (2005). Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. Journal of Electrocardiology, 38(4), 45-50. doi:10.1016/j.jelectrocard.2005.06.096Camelliti, P., Green, C. R., LeGrice, I., & Kohl, P. (2004). Fibroblast Network in Rabbit Sinoatrial Node. Circulation Research, 94(6), 828-835. doi:10.1161/01.res.0000122382.19400.14Rook, M. B., van Ginneken, A. C., de Jonge, B., el Aoumari, A., Gros, D., & Jongsma, H. J. (1992). Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. American Journal of Physiology-Cell Physiology, 263(5), C959-C977. doi:10.1152/ajpcell.1992.263.5.c959Mahoney, V. M., Mezzano, V., Mirams, G. R., Maass, K., Li, Z., Cerrone, M., … Morley, G. E. (2016). Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart. Scientific Reports, 6(1). doi:10.1038/srep26744Quinn, T. A., Camelliti, P., Rog-Zielinska, E. A., Siedlecka, U., Poggioli, T., O’Toole, E. T., … Kohl, P. (2016). Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proceedings of the National Academy of Sciences, 113(51), 14852-14857. doi:10.1073/pnas.1611184114Rubart, M., Tao, W., Lu, X.-L., Conway, S. J., Reuter, S. P., Lin, S.-F., & Soonpaa, M. H. (2017). Electrical coupling between ventricular myocytes and myofibroblasts in the infarcted mouse heart. Cardiovascular Research, 114(3), 389-400. doi:10.1093/cvr/cvx163Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic Modulation of Cardiac Impulse Conduction by Myofibroblasts. Circulation Research, 98(6), 801-810. doi:10.1161/01.res.0000214537.44195.a3Jacquemet, V., & Henriquez, C. S. (2008). Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model. American Journal of Physiology-Heart and Circulatory Physiology, 294(5), H2040-H2052. doi:10.1152/ajpheart.01298.2007Li, Y., Asfour, H., & Bursac, N. (2017). Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue. Acta Biomaterialia, 55, 120-130. doi:10.1016/j.actbio.2017.04.027Zlochiver, S., Muñoz, V., Vikstrom, K. L., Taffet, S. M., Berenfeld, O., & Jalife, J. (2008). Electrotonic Myofibroblast-to-Myocyte Coupling Increases Propensity to Reentrant Arrhythmias in Two-Dimensional Cardiac Monolayers. Biophysical Journal, 95(9), 4469-4480. doi:10.1529/biophysj.108.136473Nguyen, T. P., Xie, Y., Garfinkel, A., Qu, Z., & Weiss, J. N. (2011). Arrhythmogenic consequences of myofibroblast–myocyte coupling. Cardiovascular Research, 93(2), 242-251. doi:10.1093/cvr/cvr292Greisas, A., & Zlochiver, S. (2016). The Multi-Domain Fibroblast/Myocyte Coupling in the Cardiac Tissue: A Theoretical Study. Cardiovascular Engineering and Technology, 7(3), 290-304. doi:10.1007/s13239-016-0266-xSridhar, S., Vandersickel, N., & Panfilov, A. V. (2017). Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue. Scientific Reports, 7(1). doi:10.1038/srep40985Gomez, J. F., Cardona, K., Martinez, L., Saiz, J., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study. PLoS ONE, 9(7), e103273. doi:10.1371/journal.pone.0103273KODAMA, M., KATO, K., HIRONO, S., OKURA, Y., HANAWA, H., YOSHIDA, T., … AIZAWA, Y. (2004). Linkage Between Mechanical and Electrical Alternans in Patients with Chronic Heart Failure. Journal of Cardiovascular Electrophysiology, 15(3), 295-299. doi:10.1046/j.1540-8167.2004.03016.xRosenbaum, D. S., Jackson, L. E., Smith, J. M., Garan, H., Ruskin, J. N., & Cohen, R. J. (1994). Electrical Alternans and Vulnerability to Ventricular Arrhythmias. New England Journal of Medicine, 330(4), 235-241. doi:10.1056/nejm199401273300402Jordan, P. N., & Christini, D. J. (2006). Action Potential Morphology Influences Intracellular Calcium Handling Stability and the Occurrence of Alternans. Biophysical Journal, 90(2), 672-680. doi:10.1529/biophysj.105.071340Cherry, E. M. (2017). Distinguishing mechanisms for alternans in cardiac cells using constant-diastolic-interval pacing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(9), 093902. doi:10.1063/1.4999354Groenendaal, W., Ortega, F. A., Krogh-Madsen, T., & Christini, D. J. (2014). Voltage and Calcium Dynamics Both Underlie Cellular Alternans in Cardiac Myocytes. Biophysical Journal, 106(10), 2222-2232. doi:10.1016/j.bpj.2014.03.048Nolasco, J. B., & Dahlen, R. W. (1968). A graphic method for the study of alternation in cardiac action potentials. Journal of Applied Physiology, 25(2), 191-196. doi:10.1152/jappl.1968.25.2.191Picht, E., DeSantiago, J., Blatter, L. A., & Bers, D. M. (2006). Cardiac Alternans Do Not Rely on Diastolic Sarcoplasmic Reticulum Calcium Content Fluctuations. Circulation Research, 99(7), 740-748. doi:10.1161/01.res.0000244002.88813.91Díaz, M. E., O’Neill, S. C., & Eisner, D. A. (2004). Sarcoplasmic Reticulum Calcium Content Fluctuation Is the Key to Cardiac Alternans. Circulation Research, 94(5), 650-656. doi:10.1161/01.res.0000119923.64774.72Zhou, X., Bueno-Orovio, A., Orini, M., Hanson, B., Hayward, M., Taggart, P., … Rodriguez, B. (2016). In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes. Circulation Research, 118(2), 266-278. doi:10.1161/circresaha.115.307836Xie, L.-H., Sato, D., Garfinkel, A., Qu, Z., & Weiss, J. N. (2008). Intracellular Ca Alternans: Coordinated Regulation by Sarcoplasmic Reticulum Release, Uptake, and Leak. Biophysical Journal, 95(6), 3100-3110. doi:10.1529/biophysj.108.130955Cutler, M. J., Wan, X., Laurita, K. R., Hajjar, R. J., & Rosenbaum, D. S. (2009). Targeted SERCA2a Gene Expression Identifies Molecular Mechanism and Therapeutic Target for Arrhythmogenic Cardiac Alternans. Circulation: Arrhythmia and Electrophysiology, 2(6), 686-694. doi:10.1161/circep.109.863118Kanaporis, G., & Blatter, L. A. (2015). The Mechanisms of Calcium Cycling and Action Potential Dynamics in Cardiac Alternans. Circulation Research, 116(5), 846-856. doi:10.1161/circresaha.116.305404Pastore, J. M., Girouard, S. D., Laurita, K. R., Akar, F. G., & Rosenbaum, D. S. (1999). Mechanism Linking T-Wave Alternans to the Genesis of Cardiac Fibrillation. Circulation, 99(10), 1385-1394. doi:10.1161/01.cir.99.10.1385O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061Mora, M. T., Ferrero, J. M., Romero, L., & Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLOS ONE, 12(11), e0187739. doi:10.1371/journal.pone.0187739Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410Spach, M. S., Heidlage, J. F., Dolber, P. C., & Barr, R. C. (2000). Electrophysiological Effects of Remodeling Cardiac Gap Junctions and Cell Size. Circulation Research, 86(3), 302-311. doi:10.1161/01.res.86.3.302Kieval, R. S., Spear, J. F., & Moore, E. N. (1992). Gap junctional conductance in ventricular myocyte pairs isolated from postischemic rabbit myocardium. Circulation Research, 71(1), 127-136. doi:10.1161/01.res.71.1.127Gomez, J. F., Cardona, K., Romero, L., Ferrero, J. M., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study. PLoS ONE, 9(9), e106602. doi:10.1371/journal.pone.0106602Taggart, P., Sutton, P. M., Opthof, T., Coronel, R., Trimlett, R., Pugsley, W., & Kallis, P. (2000). Inhomogeneous Transmural Conduction During Early Ischaemia in Patients with Coronary Artery Disease. Journal of Molecular and Cellular Cardiology, 32(4), 621-630. doi:10.1006/jmcc.2000.1105Heidenreich E. Algoritmos para ecuaciones de reacción difusión aplicados a electrofisiología. Ph.D. Thesis. Universidad de Zaragoza. 2009. https://institutoi4.net/wp-content/uploads/2017/08/TesisEAH.pdfHeidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2Xie, Y., Garfinkel, A., Weiss, J. N., & Qu, Z. (2009). Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models. American Journal of Physiology-Heart and Circulatory Physiology, 297(2), H775-H784. doi:10.1152/ajpheart.00341.2009Luo, C. H., & Rudy, Y. (1991). A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circulation Research, 68(6), 1501-1526. doi:10.1161/01.res.68.6.1501Pruvot, E. J., Katra, R. P., Rosenbaum, D. S., & Laurita, K. R. (2004). Role of Calcium Cycling Versus Restitution in the Mechanism of Repolarization Alternans. Circulation Research, 94(8), 1083-1090. doi:10.1161/01.res.0000125629.72053.95Kanaporis, G., & Blatter, L. A. (2017). Membrane potential determines calcium alternans through modulation of SR Ca 2+ load and L-type Ca 2+ current. Journal of Molecular and Cellular Cardiology, 105, 49-58. doi:10.1016/j.yjmcc.2017.02.004Goldhaber, J. I., Xie, L.-H., Duong, T., Motter, C., Khuu, K., & Weiss, J. N. (2005). Action Potential Duration Restitution and Alternans in Rabbit Ventricular Myocytes. Circulation Research, 96(4), 459-466. doi:10.1161/01.res.0000156891.66893.83Walmsley, J., Rodriguez, J. F., Mirams, G. R., Burrage, K., Efimov, I. R., & Rodriguez, B. (2013). mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study. PLoS ONE, 8(2), e56359. doi:10.1371/journal.pone.0056359Narayan, S. M., Bayer, J. D., Lalani, G., & Trayanova, N. A. (2008). Action Potential Dynamics Explain Arrhythmic Vulnerability in Human Heart Failure. Journal of the American College of Cardiology, 52(22), 1782-1792. doi:10.1016/j.jacc.2008.08.037Livshitz, L. M., & Rudy, Y. (2007). Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. American Journal of Physiology-Heart and Circulatory Physiology, 292(6), H2854-H2866. doi:10.1152/ajpheart.01347.2006WILSON, L. D., WAN, X., & ROSENBAUM, D. S. (2006). Cellular Alternans: A Mechanism Linking Calcium Cycling Proteins to Cardiac Arrhythmogenesis. Annals of the New York Academy of Sciences, 1080(1), 216-234. doi:10.1196/annals.1380.018Wilson, L. D., Jeyaraj, D., Wan, X., Hoeker, G. S., Said, T. H., Gittinger, M., … Rosenbaum, D. S. (2009). Heart failure enhances susceptibility to arrhythmogenic cardiac alternans. Heart Rhythm, 6(2), 251-259. doi:10.1016/j.hrthm.2008.11.008Cutler, M. J., Wan, X., Plummer, B. N., Liu, H., Deschenes, I., Laurita, K. R., … Rosenbaum, D. S. (2012). Targeted Sarcoplasmic Reticulum Ca 2+ ATPase 2a Gene Delivery to Restore Electrical Stability in the Failing Heart. Circulation, 126(17), 2095-2104. doi:10.1161/circulationaha.111.071480Bayer, J. D., Narayan, S. M., Lalani, G. G., & Trayanova, N. A. (2010). Rate-dependent action potential alternans in human heart failure implicates abnormal intracellular calcium handling. Heart Rhythm, 7(8), 1093-1101. doi:10.1016/j.hrthm.2010.04.008Wang, L., Myles, R. C., De Jesus, N. M., Ohlendorf, A. K. P., Bers, D. M., & Ripplinger, C. M. (2014). Optical Mapping of Sarcoplasmic Reticulum Ca 2+ in the Intact Heart. Circulation Research, 114(9), 1410-1421. doi:10.1161/circresaha.114.302505Rovetti, R., Cui, X., Garfinkel, A., Weiss, J. N., & Qu, Z. (2010). Spark-Induced Sparks As a Mechanism of Intracellular Calcium Alternans in Cardiac Myocytes. Circulation Research, 106(10), 1582-1591. doi:10.1161/circresaha.109.213975Tomek, J., Tomková, M., Zhou, X., Bub, G., & Rodriguez, B. (2018). Modulation of Cardiac Alternans by Altered Sarcoplasmic Reticulum Calcium Release: A Simulation Study. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01306Hammer, K. P., Ljubojevic, S., Ripplinger, C. M., Pieske, B. M., & Bers, D. M. (2015). Cardiac myocyte alternans in intact heart: Influence of cell–cell coupling and β-adrenergic stimulation. Journal of Molecular and Cellular Cardiology, 84, 1-9. doi:10.1016/j.yjmcc.2015.03.012Majumder, R., Engels, M. C., de Vries, A. A. F., Panfilov, A. V., & Pijnappels, D. A. (2016). Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium. Scientific Reports, 6(1). doi:10.1038/srep24334Shiferaw, Y., & Karma, A. (2006). Turing instability mediated by voltage and calcium diffusion in paced cardiac cells. Proceedings of the National Academy of Sciences, 103(15), 5670-5675. doi:10.1073/pnas.0511061103Sato, D., Shiferaw, Y., Garfinkel, A., Weiss, J. N., Qu, Z., & Karma, A. (2006). Spatially Discordant Alternans in Cardiac Tissue. Circulation Research, 99(5), 520-527. doi:10.1161/01.res.0000240542.03986.e

    Using Machine Learning to Characterize Atrial Fibrotic Substrate from Intracardiac Signals with a Hybrid in silico and in vivo Dataset

    Get PDF
    [EN] In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known to decrease with increased structural tissue remodeling, referred to as fibrosis. In addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable target for catheter ablation. However, it remains an open challenge to find fibrotic areas and to differentiate their density and transmurality. This study aims to identify the volume fraction and transmurality of fibrosis in the atrial substrate. Simulated cardiac electrograms, combined with a generalized model of clinical noise, reproduce clinically measured signals. Our hybrid dataset approach combines in silico and clinical electrograms to train a decision tree classifier to characterize the fibrotic atrial substrate. This approach captures different in vivo dynamics of the electrical propagation reflected on healthy electrogram morphology and synergistically combines it with synthetic fibrotic electrograms from in silico experiments. The machine learning algorithm was tested on five patients and compared against clinical voltage maps as a proof of concept, distinguishing non-fibrotic from fibrotic tissue and characterizing the patient's fibrotic tissue in terms of density and transmurality. The proposed approach can be used to overcome a single voltage cut-off value to identify fibrotic tissue and guide ablation targeting fibrotic areas.We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through DO637/22-3, LO2093/1-1 and LU 2294/1-1, by the European Union's Horizon 2020 programme (grant agreement No.766082, MY-ATRIA project), by the KIT-Publication Fund of the Karlsruhe Institute of Technology and by the Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 2017-2020 from the Ministerio de Ciencia e Innovacion y Universidades (PID2019-104356RB-C41/AEI/10.13039/501100011033)Sánchez Arciniegas, JP.; Luongo, G.; Nothstein, M.; Unger, LA.; Saiz Rodríguez, FJ.; Trenor Gomis, BA.; Luik, A.... (2021). Using Machine Learning to Characterize Atrial Fibrotic Substrate from Intracardiac Signals with a Hybrid in silico and in vivo Dataset. Frontiers in Physiology. 12:1-15. https://doi.org/10.3389/fphys.2021.699291S1151

    In silico screening of the impact of hERG channel kinetic abnormalities on channel block and susceptibility to acquired long QT syndrome

    Get PDF
    Accurate diagnosis of predisposition to long QT syndrome is crucial for reducing the risk of cardiac arrhythmias. In recent years, drug-induced provocative tests have proved useful to unmask some latent mutations linked to cardiac arrhythmias. In this study we expanded this concept by developing a prototype for a computational provocative screening test to reveal genetic predisposition to acquired long-QT syndrome (aLQTS). We developed a computational approach to reveal the pharmacological properties of I blocking drugs that are most likely to cause aLQTS in the setting of subtle alterations in I channel gating that would be expected to result from benign genetic variants. We used the model to predict the most potentially lethal combinations of kinetic anomalies and drug properties. In doing so, we also implicitly predicted ideal inverse therapeutic properties of K channel openers that would be expected to remedy a specific defect We systematically performed "in silico mutagenesis" by altering discrete kinetic transition rates of the Fink et al. Markov model of human l channels, corresponding to activation, inactivation, deactivation and recovery from inactivation of I-Kr channels. We then screened and identified the properties of IKr blockers that caused acquired long QT and therefore unmasked mutant phenotypes for mild, moderate and severe variants. Mutant I-Kr channels were incorporated into the O'Hara et al. human ventricular action potential (AP) model and subjected to simulated application of a wide variety of I-drug interactions in order to identify the characteristics that selectively exacerbate the AP duration (APD) differences between wild-type and IKr mutated cells. Our results show that drugs with disparate affinities to conformation states of the I-Kr, channel are key to amplify variants underlying susceptibility to acquired long QT syndrome, an effect that is especially pronounced at slow frequencies. Finally, we developed a mathematical formulation of the M54T MiRP1 latent mutation and simulated a provocative test. In this setting, application of dofetilide dramatically amplified the predicted QT interval duration in the M54T hMiRP1 mutation compared to wild-type.This work was partially supported by the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain (TIN2012-37546-CO3-01) and the European Commission (European Regional Development Funds - ERDF-FEDER), Programa de Apoyo a la Investigacion y Desarrollo de la Universidad Politecnica de Valencia (PAID-00-10-3212) to L.R., Direccion General de Politica Cientifica de la Generalitat Valenciana (GV/2013/119), and Programa Prometeo de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana (PROMETEO/ 2012/030). The research was also supported by the American Heart Association (GIAs (10GRNT3880050, 13GRNT14370019), Western States Affiliate), Alfred P. Sloan Foundation, the National Institutes of Health NHLBI R01-HL-085592 and a research grant from Gilead Sciences (to CEC).Romero Pérez, L.; Trénor Gomis, BA.; Yang, P.; Saiz Rodríguez, FJ.; Clancy, CE. (2014). In silico screening of the impact of hERG channel kinetic abnormalities on channel block and susceptibility to acquired long QT syndrome. Journal of Molecular and Cellular Cardiology. 72:126-137. https://doi.org/10.1016/j.yjmcc.2014.02.018S1261377

    Reduced response to IKr blockade and altered hERG1a/1b stoichiometryin human heart failure

    Full text link
    Heart failure (HF) claims 250,000 lives per year in the US, and nearly half of these deaths are sudden and presumably due to ventricular tachyarrhythmias. QT interval and action potential (AP) prolongation are hallmark proarrhythmic changes in the failing myocardium, which potentially result from alterations in repolarizing potassium currents. Thus,we aimed to examinewhether decreased expression of the rapid delayed rectifier potassiumcurrent, IKr, contributes to repolarization abnormalities in human HF. Tomap functional IKr expression across the left ventricle (LV), we optically imaged coronary-perfused LV free wall from donor and end-stage failing human hearts. The LV wedge preparation was used to examine transmural AP durations at 80% repolarization (APD80), and treatment with the IKr-blocking drug, E-4031, was utilized to interrogate functional expression. We assessed the percent change in APD80 post-IKr blockade relative to baseline APD80 (ΔAPD80) and found that ΔAPD80s are reduced in failing versus donor hearts in each transmural region, with 0.35-, 0.43-, and 0.41-fold reductions in endo-, mid-, and epicardium, respectively (p = 0.008, 0.037, and 0.022). We then assessed hERG1 isoform gene and protein expression levels using qPCR and Western blot. While we did not observe differences in hERG1a or hERG1b gene expression between donor and failing hearts, we found a shift in the hERG1a:hERG1b isoform stoichiometry at the protein level. Computer simulations were then conducted to assess IKr block under E-4031 influence in failing and nonfailing conditions. Our results confirmed the experimental observations and E-4031-induced relative APD80 prolongationwas greater in normal conditions than in failing conditions, provided that the cellularmodel of HF included a significant downregulation of IKr. In humanHF, the response to IKr blockade is reduced, suggesting decreased functional IKr expression. This attenuated functional response is associated with altered hERG1a:hERG1b protein stoichiometry in the failing human LV, and failing cardiomyoctye simulations support the experimental findings. Thus, of IKr protein and functional expression may be important determinants of repolarization remodeling in the failing human LV.We thank the Translational Cardiovascular Biobank & Repository (TCBR) at Washington University for provision of donor/patient records. The TCBR is supported by the NIH/CTSA (UL1 TR000448), Children's Discovery Institute, and Richard J. Wilkinson Trust. We also thank the laboratory of Dr. Sakiyama-Elbert for the use of the StepOnePlus equipment We appreciate the critical feedback on the manuscript by Dr. Jeanne Nerbonne. This work has been supported by the National Heart, Lung & Blood Institute (NHLBI, R01 HL114395). K. Holzem has been supported by the American Heart Association (12PRE12050315) and the NHLBI (F30 HL114310).Holzem, KM.; Gómez García, JF.; Glukhov, AV.; Madden, EJ.; Koppel, AC.; Ewald, GA.; Trénor Gomis, BA.... (2016). Reduced response to IKr blockade and altered hERG1a/1b stoichiometryin human heart failure. Journal of Molecular and Cellular Cardiology. 96:82-92. https://doi.org/10.1016/j.yjmcc.2015.06.008S82929

    Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure

    Get PDF
    Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na+ current (INaL) is relevant and is currently under investigation. In this study we examined the role of INaL in the electrophysiological phenotype of ventricular myocytes, and its proarrhythmic effects in the failing heart. A model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of INaL. A sensitivity analysis of the model was performed and simulations of the pathological electrical activity of the cell were conducted. The proposed model for the human INaL and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. The sensitivity analysis of the modulation of electrophysiological parameters of myocytes from failing hearts due to ion channels remodeling, revealed a role for INaL in the prolongation of action potential duration (APD), triangulation of the shape of the AP, and changes in Ca2+ transient. A mechanistic investigation of intracellular Na+ accumulation and APD shortening with increasing frequency of stimulation of failing myocytes revealed a role for the Na+/K+ pump, the Na+/Ca2+ exchanger and INaL. The results of the simulations also showed that in failing myocytes, the enhancement of INaL increased the reverse rate-dependent APD prolongation and the probability of initiating early afterdepolarizations. The electrophysiological remodeling of failing hearts and especially the enhancement of the INaL prolong APD and alter Ca2+ transient facilitating the development of early afterdepolarizations. An enhanced INaL appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of [Ca2+]i homeostasis of failing myocytes

    Lessons Learned from Multi-scale Modeling of the Failing Heart

    Get PDF
    [EN] Heart failure constitutes a major public health problem worldwide. Affected patients experience a number of changes in the electrical function of the heart that predispose to potentially lethal cardiac arrhythmias. Due to the multitude of electrophysiological changes that may occur during heart failure, the scientific literature is complex and sometimes ambiguous, perhaps because these findings are highly dependent on the etiology, the stage of heart failure, and the experimental model used to study these changes. Nevertheless, a number of common features of failing hearts have been documented. Prolongation of the action potential (AP) involving ion channel remodeling and alterations in calcium handling have been established as the hallmark characteristics of myocytes isolated from failing hearts. Intercellular uncoupling and fibrosis are identified as major arrhythmogenic factors. Multi-scale computational simulations are a powerful tool that complements experimental and clinical research. The development of biophysically detailed computer models of single myocytes and cardiac tissues has contributed greatly to our understanding of processes underlying excitation and repolarization in the heart. The electrical, structural, and metabolic remodeling that arises in cardiac tissues during heart failure has been addressed from different computational perspectives to further understand the arrhythmogenic substrate. This review summarizes the contributions from computational modeling and simulation to predict the underlying mechanisms of heart failure phenotypes and their implications for arrhythmogenesis, ranging from the cellular level to whole-heart simulations. The main aspects of heart failure are presented in several related sections. An overview of the main electrophysiological and structural changes that have been observed experimentally in failing hearts is followed by the description and discussion of the simulation work in this field at the cellular level, and then in 2D and 3D cardiac structures. The implications for arrhythmogenesis in heart failure are also discussed including therapeutic measures, such as drug effects and cardiac resynchronization therapy. Finally, the future challenges in heart failure modeling and simulation will be discussed.This work was partially supported by (i) the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain and the European Commission (European Regional Development Funds ERDF-FEDER) (grant number TIN2012-37546-C03-01), and by (ii) Programa Prometeo de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana (grant number PROMETEO/2012/030).Gómez García, JF.; Cardona-Urrego, KE.; Trénor Gomis, BA. (2015). Lessons Learned from Multi-scale Modeling of the Failing Heart. Journal of Molecular and Cellular Cardiology. 89:146-159. https://doi.org/10.1016/j.yjmcc.2015.10.016S1461598

    Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes

    Full text link
    The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to I(Na-L)significantly increases intracellular Na+, [Na]; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]; which may further enhance I(Na-L)due to calmodulindependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O'Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2(+)]; homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (<= 1.5 mM) in [Na] even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na] when I(Na-L)was increased. Based on our simulations, the major short-term effect of markedly augmenting I(Na-L)is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, Ica-L. Furthermore, this action potential prolongation does not contribute to [Na]; increase.This work was supported by (i) the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain (grant number TIN2012-37546-C03-01) and the European Commission (European Regional Development Funds-ERDF-FEDER), (ii) by the Direccion General de Politica Cientifica de la Generalitat Valenciana (grant number GV/2013/119), and by (iii), Programa Prometeo (PROMETEO/2016/088) de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.K Cardona; Trénor Gomis, BA.; W Giles (2016). Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes. PLoS ONE. 11(11). https://doi.org/10.1371/journal.pone.0167060S111
    corecore