15 research outputs found
Clinico鈥恇iological features and outcome of patients with splenic marginal zone lymphoma with histological transformation
We describe 36 patients with splenic marginal zone lymphoma (SMZL) with transformation (SMZL-T), including 15 from a series of 84 patients with SMZL diagnosed at the Hospital Clinic of Barcelona (HCB) and 21 diagnosed with SMZL-T in other centres. In the HCB cohort, the cumulative incidence of transformation at 5 years was 15%. Predictors for transformation were cytopenias, hypoalbuminaemia, complex karyotype (CK) and both the Intergruppo Italiano Linfomi (ILL) and simplified Haemoglobin, Platelet count, lactate dehydrogenase (LDH) and extrahilar Lymphadenopathy (HPLL)/ABC scores (P < 0路05). The only independent predictor for transformation in multivariate analysis was CK [hazard ratio (HR) 4路025, P = 0路05]. Patients with SMZL-T had a significantly higher risk of death than the remainder (HR 3路89, P < 0路001). Of the 36 patients with SMZL-T, one developed Hodgkin lymphoma and 35 a diffuse large B-cell lymphoma, 71% with a non-germinal centre phenotype. The main features were B symptoms, lymphadenopathy, and high serum LDH. CK was observed in 12/22 (55%) SMZL-T and fluorescence in situ hybridisation detected abnormalities of MYC proto-oncogene, basic helix-loop-helix transcription factor (MYC), B-cell leukaemia/lymphoma 2 (BCL2) and/or BCL6 in six of 14 (43%). In all, 21 patients received immunochemotherapy, six chemotherapy, one radiotherapy and three splenectomy. The complete response (CR) rate was 61% and the median survival from transformation was 4路92 years. Predictors for a worse survival in multivariate analysis were high-risk International Prognostic Index (HR 5路294, P = 0路016) and lack of CR (HR 2路67, P < 0路001)
Unraveling the genetics of transformed splenic marginal zone lymphoma
Altres ajuts: Fundaci贸 La Marat贸 de TV3 (201904-30)The genetic mechanisms associated with splenic marginal zone lymphoma (SMZL) transformation are not well defined. We studied 41 patients with SMZL that eventually underwent large B-cell lymphoma transformation. Tumor material was obtained either only at diagnosis (9 patients), at diagnosis and transformation (18 patients), and only at transformation (14 patients). Samples were categorized in 2 groups: (1) at diagnosis (SMZL, n = 27 samples), and (2) at transformation (SMZL-T, n = 32 samples). Using copy number arrays and a next-generation sequencing custom panel, we identified that the main genomic alterations in SMZL-T involved TNFAIP3, KMT2D, TP53, ARID1A, KLF2, 1q gains, and losses of 9p21.3 (CDKN2A/B) and 7q31-q32. Compared with SMZL, SMZL-T had higher genomic complexity, and higher incidence of TNFAIP3 and TP53 alterations, 9p21.3 (CDKN2A/B) losses, and 6p gains. SMZL and SMZL-T clones arose by divergent evolution from a common altered precursor cell that acquired different genetic alterations in virtually all evaluable cases (92%, 12 of 13 cases). Using whole-genome sequencing of diagnostic and transformation samples in 1 patient, we observed that the SMZL-T sample carried more genomic aberrations than the diagnostic sample, identified a translocation t(14;19)(q32;q13) present in both samples, and detected a focal B2M deletion due to chromothripsis acquired at transformation. Survival analysis showed that KLF2 mutations, complex karyotype, and International Prognostic Index score at transformation were predictive of a shorter survival from transformation (P =.001; P =.042; and P =.007; respectively). In summary, SMZL-T are characterized by higher genomic complexity than SMZL, and characteristic genomic alterations that could represent key players in the transformation event
Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling
Mantle cell lymphoma (MCL) is genetically characterized by the t(11;14)(q13;q32) translocation and a high number of secondary chromosomal alterations. However, only a limited number of target genes have been identified. We have studied 10 MCL cell lines and 28 primary tumors with a combination of a high-density single-nucleotide polymorphism array and gene expression profiling. We detected highly altered genomes in the majority of the samples with a high number of partial uniparental disomies (UPDs). The UPD at 17p was one of the most common, and it was associated with TP53 gene inactivation. Homozygous deletions targeted 4 known tumor suppressor genes (CDKN2C, BCL2L11, CDKN2A, and RB1) and 6 new genes (FAF1, MAP2, SP100, MOBKL2B, ZNF280A, and PRAME). Gene amplification coupled with overexpression was identified in 35 different regions. The most recurrent amplified regions were 11q13.3-q13.5, 13q31.3, and 18q21.33, which targeted CCND1, C13orf25, and BCL2, respectively. Interestingly, the breakpoints flanking all the genomic alterations, including UPDs, were significantly associated with genomic regions enriched in copy number variants and segmental duplications, suggesting that the recombination at these regions may play a role in the genomic instability of MCL. This integrative genomic analysis has revealed target genes that may be potentially relevant in MCL pathogenesis
Real-World Data on Chronic Myelomonocytic Leukemia: Clinical and Molecular Characteristics, Treatment, Emerging Drugs, and Patient Outcomes
Despite emerging molecular information on chronic myelomonocytic leukemia (CMML), patient outcome remains unsatisfactory and little is known about the transformation to acute myeloid leukemia (AML). In a single-center cohort of 219 CMML patients, we explored the potential correlation between clinical features, gene mutations, and treatment regimens with overall survival (OS) and clonal evolution into AML. The most commonly detected mutations were TET2, SRSF2, ASXL1, and RUNX1. Median OS was 34 months and varied according to age, cytogenetic risk, FAB, CPSS and CPSS-Mol categories, and number of gene mutations. Hypomethylating agents were administered to 37 patients, 18 of whom responded. Allogeneic stem cell transplantation (alloSCT) was performed in 22 patients. Two-year OS after alloSCT was 60.6%. Six patients received targeted therapy with IDH or FLT3 inhibitors, three of whom attained a long-lasting response. AML transformation occurred in 53 patients and the analysis of paired samples showed changes in gene mutation status. Our real-world data emphasize that the outcome of CMML patients is still unsatisfactory and alloSCT remains the only potentially curative treatment. However, targeted therapies show promise in patients with specific gene mutations. Complete molecular characterization can help to improve risk stratification, understand transformation, and personalize therapy
Real-World Data on Chronic Myelomonocytic Leukemia : Clinical and Molecular Characteristics, Treatment, Emerging Drugs, and Patient Outcomes
This research was supported by grants from resident award Contractes Cl铆nic de Recerca Emili Letang-Josep Font 2021, granted by Hospital Cl铆nic de Barcelona; and it was funded by Instituto de Salud Carlos III (ISCIII) through the project "FIS PI19/01476" and co-funded by the European Union.Despite emerging molecular information on chronic myelomonocytic leukemia (CMML), patient outcome remains unsatisfactory and little is known about the transformation to acute myeloid leukemia (AML). In a single-center cohort of 219 CMML patients, we explored the potential correlation between clinical features, gene mutations, and treatment regimens with overall survival (OS) and clonal evolution into AML. The most commonly detected mutations were TET2, SRSF2, ASXL1, and RUNX1. Median OS was 34 months and varied according to age, cytogenetic risk, FAB, CPSS and CPSS-Mol categories, and number of gene mutations. Hypomethylating agents were administered to 37 patients, 18 of whom responded. Allogeneic stem cell transplantation (alloSCT) was performed in 22 patients. Two-year OS after alloSCT was 60.6%. Six patients received targeted therapy with IDH or FLT3 inhibitors, three of whom attained a long-lasting response. AML transformation occurred in 53 patients and the analysis of paired samples showed changes in gene mutation status. Our real-world data emphasize that the outcome of CMML patients is still unsatisfactory and alloSCT remains the only potentially curative treatment. However, targeted therapies show promise in patients with specific gene mutations. Complete molecular characterization can help to improve risk stratification, understand transformation, and personalize therap
Genetic and phenotypic attributes of splenic marginal zone lymphoma
Altres ajuts: Swiss Cancer Research, ID 3746, 4395, 4660, and 4705; Swiss National Science Foundation, IDSplenic marginal zone B-cell lymphoma (SMZL) is a heterogeneous clinico-biological entity. The clinical course is variable, multiple genes are mutated with no unifying mechanism, and essential regulatory pathways and surrounding microenvironments are diverse. We sought to clarify the heterogeneity of SMZL by resolving different subgroups and their underlying genomic abnormalities, pathway signatures, and microenvironment compositions to uncover biomarkers and therapeutic vulnerabilities. We studied 303 SMZL spleen samples collected through the IELSG46 multicenter international study (NCT02945319) by using a multiplatform approach. We carried out genetic and phenotypic analyses, defined self-organized signatures, validated the findings in independent primary tumor metadata and in genetically modified mouse models, and determined correlations with outcome data. We identified 2 prominent genetic clusters in SMZL, termed NNK (58% of cases, harboring NF-魏B, NOTCH, and KLF2 modules) and DMT (32% of cases, with DNA-damage response, MAPK, and TLR modules). Genetic aberrations in multiple genes as well as cytogenetic and immunogenetic features distinguished NNK- from DMT-SMZLs. These genetic clusters not only have distinct underpinning biology, as judged by differences in gene-expression signatures, but also different outcomes, with inferior survival in NNK-SMZLs. Digital cytometry and in situ profiling segregated 2 basic types of SMZL immune microenvironments termed immune-suppressive SMZL (50% of cases, associated with inflammatory cells and immune checkpoint activation) and immune-silent SMZL (50% of cases, associated with an immune-excluded phenotype) with distinct mutational and clinical connotations. In summary, we propose a nosology of SMZL that can implement its classification and also aid in the development of rationally targeted treatments