1,195 research outputs found

    MuSR method and tomographic probability representation of spin states

    Full text link
    Muon spin rotation/relaxation/resonance (MuSR) technique for studying matter structures is considered by means of a recently introduced probability representation of quantum spin states. A relation between experimental MuSR histograms and muon spin tomograms is established. Time evolution of muonium, anomalous muonium, and a muonium-like system is studied in the tomographic representation. Entanglement phenomenon of a bipartite muon-electron system is investigated via tomographic analogues of Bell number and positive partial transpose (PPT) criterion. Reconstruction of the muon-electron spin state as well as the total spin tomography of composed system is discussed.Comment: 20 pages, 4 figures, LaTeX, submitted to Journal of Russian Laser Researc

    Screening of antioxidant properties of the apple juice using the front-face synchronous fluorescence and chemometrics

    Get PDF
    Fluorescence spectroscopy is gaining increasing attention in food analysis due to its higher sensitivity and selectivity as compared to other spectroscopic techniques. Synchronous scanning fluorescence technique is particularly useful in studies of multi-fluorophoric food samples, providing a further improvement of selectivity by reduction in the spectral overlapping and suppressing light-scattering interferences. Presently, we study the feasibility of the prediction of the total phenolics, flavonoids, and antioxidant capacity using front-face synchronous fluorescence spectra of apple juices. Commercial apple juices from different product ranges were studied. Principal component analysis (PCA) applied to the unfolded synchronous fluorescence spectra was used to compare the fluorescence of the entire sample set. The regression analysis was performed using partial least squares (PLS1 and PLS2) methods on the unfolded total synchronous and on the single-offset synchronous fluorescence spectra. The best calibration models for all of the studied parameters were obtained using the PLS1 method for the single-offset synchronous spectra. The models for the prediction of the total flavonoid content had the best performance; the optimal model was obtained for the analysis of the synchronous fluorescence spectra at Delta lambda = 110 nm (R (2) = 0.870, residual predictive deviation (RPD) = 2.7). The optimal calibration models for the prediction of the total phenolic content (Delta lambda = 80 nm, R (2) = 0.766, RPD = 2.0) and the total antioxidant capacity (Delta lambda = 70 nm, R (2) = 0.787, RPD = 2.1) had only an approximate predictive ability. These results demonstrate that synchronous fluorescence could be a useful tool in fast semi-quantitative screening for the antioxidant properties of the apple juices.info:eu-repo/semantics/publishedVersio

    The Study of Quantum Interference in Metallic Photonic Crystals Doped with Four-Level Quantum Dots

    Get PDF
    In this work, the absorption coefficient of a metallic photonic crystal doped with nanoparticles has been obtained using numerical simulation techniques. The effects of quantum interference and the concentration of doped particles on the absorption coefficient of the system have been investigated. The nanoparticles have been considered as semiconductor quantum dots which behave as a four-level quantum system and are driven by a single coherent laser field. The results show that changing the position of the photonic band gap about the resonant energy of the two lower levels directly affects the decay rate, and the system can be switched between transparent and opaque states if the probe laser field is tuned to the resonance frequency. These results provide an application for metallic nanostructures in the fabrication of new optical switches and photonic devices

    Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms

    Full text link
    Ultra-low density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging. Finite element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference

    The Relevance of Fatalism in the Study of Latinas’ Cancer Screening Behavior: A Systematic Review of the Literature

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Background Fatalism has been identified as a dominant belief among Latinos and is believed to act as a barrier to cancer prevention. However, controversy exists over the utility of the construct in explaining health disparities experienced by disadvantaged populations above the influence of structural barriers such as low socioeconomic status (SES) and limited access to health care. Purpose This paper reviews the empirical research on fatalism and Latinas ’ participation in cancer screening in an attempt to determine whether fatalism predicts participation in cancer screening after accounting for structural barriers

    Photoreceptor Spectral Sensitivity in the Bumblebee, Bombus impatiens (Hymenoptera: Apidae)

    Get PDF
    The bumblebee Bombus impatiens is increasingly used as a model in comparative studies of colour vision, or in behavioural studies relying on perceptual discrimination of colour. However, full spectral sensitivity data on the photoreceptor inputs underlying colour vision are not available for B. impatiens. Since most known bee species are trichromatic, with photoreceptor spectral sensitivity peaks in the UV, blue and green regions of the spectrum, data from a related species, where spectral sensitivity measurements have been made, are often applied to B impatiens. Nevertheless, species differences in spectral tuning of equivalent photoreceptor classes may result in peaks that differ by several nm, which may have small but significant effects on colour discrimination ability. We therefore used intracellular recording to measure photoreceptor spectral sensitivity in B. impatiens. Spectral peaks were estimated at 347, 424 and 539 nm for UV, blue and green receptors, respectively, suggesting that this species is a UV-blue-green trichromat. Photoreceptor spectral sensitivity peaks are similar to previous measurements from Bombus terrestris, although there is a significant difference in the peak sensitivity of the blue receptor, which is shifted in the short wave direction by 12–13 nm in B. impatiens compared to B. terrestris

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004

    Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV

    Get PDF
    The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures modified, but data the same. However, in Fig. 35 the hydro calculations are corrected in this version. The data tables are available at http://www.star.bnl.gov/central/publications/ by searching for "flow" and then this pape
    corecore