10 research outputs found

    Guiding synovial inflammation by macrophage phenotype modulation: An in vitro study towards a therapy for osteoarthritis

    Get PDF
    Objective: The aims of this study were to modulate inflammation in synovial explants with the compounds: dexamethasone, rapamycin, bone morphogenetic protein 7 (BMP-7) and pravastatin, and to investigate the mod

    The Effect of Biomaterials Used for Tissue Regeneration Purposes on Polarization of Macrophages

    Get PDF
    Activation of macrophages is critical in the acute phase of wound healing after implantation of surgical biomaterials. To understand the response of macrophages, they are often cultured in vitro on biomaterials. Since a wide range of biomaterials is currently used in the clinics, we undertook a systematic review of the macrophage polarization in response to these different surgical biomaterials in vitro. Beside the chemistry, material characteristics such as dimension, pore size, and surface topography are of great influence on the response of macrophages. The macrophage response also appears to depend on the differences in sterilization techniques that induce lasting biochemical changes or residues of chemicals and their byproducts used for sterilization. Regarding tissue-based biomaterials, macrophages on human or porcine dermis, strongly cross-linked by chemicals elicit in general a proinflammatory response with higher amounts of proinflammatory cytokines. Synthetic biomaterials such as polyethylene, polyethylene terephthalate (PET) + polyacrylamide (PAAm), PET + sodium salt of poly(acrylic acid) (PAANa), perfluoropolyether (PFPE) with large posts, PEG-g-PA, and polydioxanone (PDO) always appear to elicit an anti-inflammatory response in macrophages, irrespective of origin of the macrophages, for example, buffy coats or full blood. In conclusion, in general in vitro models contribute to evaluate the foreign body reaction on surgical biomaterials. Although it is difficult to simulate complexity of host response elicited by biomaterials, after their surgical implantation, an in vitro model gives indications of the initial foreign body response and allows the comparison of this response between biomaterials

    Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    Get PDF
    Background: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and Methods: The effect of macrophages cultured on polypropylene (PP) or polyethylene terephthalate coated with a collagen film (PET/Col) on ASCs in monolayer or on the same material was examined either through conditioned medium (CM) or in a direct coculture. ASC proliferation, collagen production, and gene expression were examined. As comparison, the effect of macrophages stimulated with lipopolysaccharide (LPS) and interferon gamma (IFNγ) [M(LPS/IFNγ)] or interleukin (IL) 4 [M(IL-4)] on ASCs was examined. Results: Macrophage-CM increased collagen deposition, proliferation, and gene expression of MMP1, PLOD2, and PTGS2 in ASCs, irrespective of the material. Culturing ASCs and macrophages in coculture when only macrophages were on the materials induced the same effects on gene expression. When both ASCs and macrophages were cultured on biomaterials, PP induced COL1A1 and MMP1 more than PET/Col. M(LPS/IFNγ) CM increased PLOD2, MMP1, and PTGS2 and decreased TGFB in ASCs more than the M(IL-4) CM. Conclusion: Biomaterials influence wound healing by influencing the interaction between macrophages and ASCs. We provided more insight into the behavior of different cell types during wound healing. This behavior appears to be biomaterial specific depending on which cell type interacts with the biomaterial. As such, the biomaterial will influence tissue regeneration

    A multicentre cohort study of serum and peritoneal biomarkers to predict anastomotic leakage after rectal cancer resection

    Get PDF
    Aim: Anastomotic leakage (AL) is one of the most feared complications after rectal resection. This study aimed to assess a combination of biomarkers for early detection of AL after rectal cancer resection. Method: This study was an international multicentre prospective cohort study. All patients received a pelvic drain after rectal cancer resection. On the first three postoperative days drain fluid was collected daily and C-reactive protein (CRP) was measured. Matrix metalloproteinase-2 (MMP2), MMP9, glucose, lactate, interleukin 1-beta (IL1β), IL6, IL10, tumour necrosis factor alpha (TNFα), Escherichia coli, Enterococcus faecalis, lipopolysaccharide-binding protein and amylase were measured in the drain fluid. Prediction models for AL were built for each postoperative day using multivariate penalized logistic regression. Model performance was estimated by the c-index for discrimination. The model with the best performance was visualized with a nomogram and calibration was plotted. Results: A total of 292 patients were analysed; 38 (13.0%) patients suffered from AL, with a median interval to diagnosis of 6.0 (interquartile ratio 4.0–14.8) days. AL occurred less often after partial than after total mesorectal excision (4.9% vs 15.2%, P = 0.035). Of all patients with AL, 26 (68.4%) required reoperation. AL was more often treated by reoperation in patients without a diverting ileostomy (18/20 vs 8/18, P = 0.03). The prediction model for postoperative day 1 included MMP9, TNFα, diverting ileostomy and surgical technique (c-index = 0.71). The prediction model for postoperative day 2 only included CRP (c-index = 0.69). The prediction model for postoperative day 3 included CRP and MMP9 and obtained the best model performance (c-index = 0.78). Conclusion: The combination of serum CRP and peritoneal MMP9 may be useful for earlier prediction of AL after rectal cancer resection. In clinical practice, this combination of biomarkers should be interpreted in the clinical context as with any other diagnostic tool

    Anthropogenic perturbation of the carbon fluxes from land to ocean

    Full text link
    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr-1) or sequestered in sediments (~0.5 Pg C yr-1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr-1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr-1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr-1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.Peer reviewe

    The Few Who Made It : Commercially and Clinically Successful Innovative Bone Grafts

    No full text
    Bone reconstruction techniques are mainly based on the use of tissue grafts and artificial scaffolds. The former presents well-known limitations, such as restricted graft availability and donor site morbidity, while the latter commonly results in poor graft integration and fixation in the bone, which leads to the unbalanced distribution of loads, impaired bone formation, increased pain perception, and risk of fracture, ultimately leading to recurrent surgeries. In the past decade, research efforts have been focused on the development of innovative bone substitutes that not only provide immediate mechanical support, but also ensure appropriate graft anchoring by, for example, promotingde novobone tissue formation. From the countless studies that aimed in this direction, only few have made the big jump from the benchtop to the bedside, whilst most have perished along the challenging path of clinical translation. Herein, we describe some clinically successful cases of bone device development, including biological glues, stem cell-seeded scaffolds, and gene-functionalized bone substitutes. We also discuss the ventures that these technologies went through, the hindrances they faced and the common grounds among them, which might have been key for their success. The ultimate objective of this perspective article is to highlight the important aspects of the clinical translation of an innovative idea in the field of bone grafting, with the aim of commercially and clinically informing new research approaches in the sector

    Detection de QTL et étude de gènes candidats pour des caractères liés à la qualité et la sécurité alimentaires en production d'ovins (viande et lait) dans le cadre d'un contrat européen de recherche intitulé "genesheepsafety"

    No full text
    International audienceThe "genesheepsafety" project addresses the safety and quality of food in the sheep production chain using genetics. It concerns research partners from France, UK, Italy and Spain involved in a European contract (QLK5-2000-00656) of the 5th Framework Programme. The project started in February 2001 and will end in July 2004. The project will share genetic resource populations (backcross between Sarda and Lacaune breeds in Italy, divergent Lacaune lines in France, purebred families in Churra in Spain, purebred families in Basco-Bearnaise, Lacaune and Manech breeds in France, backcross between a lean and a fat line of Blackface in UK) and will also share the genotyping of the animals using microsatellite markers. The traits measured, related to food quality and safety, include CLA (conjugated linoleic acid) of milk, mastitis resistance and milkability, nematode parasite resistance, nasal botfly resistance and out of season breeding. It is planned to study both candidate genes or functional genomics for those traits, and QTL analysis. Outputs include knowledge on food and quality traits, QTL and candidate genes, in order to implement breeding strategies on those traits
    corecore