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Abstract
Activation of macrophages is critical in the acute phase of wound healing after implantation of surgical bioma-
terials. To understand the response of macrophages, they are often cultured in vitro on biomaterials. Since a wide
range of biomaterials is currently used in the clinics, we undertook a systematic review of the macrophage po-
larization in response to these different surgical biomaterials in vitro. Beside the chemistry, material characteristics
such as dimension, pore size, and surface topography are of great influence on the response of macrophages.
The macrophage response also appears to depend on the differences in sterilization techniques that induce
lasting biochemical changes or residues of chemicals and their byproducts used for sterilization. Regarding
tissue-based biomaterials, macrophages on human or porcine dermis, strongly cross-linked by chemicals elicit
in general a proinflammatory response with higher amounts of proinflammatory cytokines. Synthetic biomate-
rials such as polyethylene, polyethylene terephthalate (PET) + polyacrylamide (PAAm), PET + sodium salt of poly
(acrylic acid) (PAANa), perfluoropolyether (PFPE) with large posts, PEG-g-PA, and polydioxanone (PDO) always
appear to elicit an anti-inflammatory response in macrophages, irrespective of origin of the macrophages, for
example, buffy coats or full blood. In conclusion, in general in vitro models contribute to evaluate the foreign
body reaction on surgical biomaterials. Although it is difficult to simulate complexity of host response elicited
by biomaterials, after their surgical implantation, an in vitro model gives indications of the initial foreign body
response and allows the comparison of this response between biomaterials.
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Introduction
A wide range of biomaterials are used as implantable
medical devices, notably for soft tissue repair. These
materials have their own characteristics with regards
to composition, mechanical strength, topography, po-
rosity, and chemistry. Implantation of biomaterials is
always associated with tissue damage, more or less im-
portant, according to the invasiveness of the surgical
procedure, that is, surgical treatment of the disease
and biomaterial delivery. Initially, the body response
most often starts with blood coagulation followed by
wound healing. This process is characterized by protein

adsorption to the biomaterial, followed by recruitment
of cells including macrophages already 60 min after im-
plantation of the material. In response to the cytokines
and chemokines produced by the macrophages, cells
involved in wound healing are attracted.1 The inflam-
matory response is very important following surgical
tissue damage and material implantation, also called
foreign body reaction.

Activation of macrophages is critical in the acute
phase of wound healing.2,3 Macrophages can be roughly
divided into proinflammatory macrophages, also called
M1 macrophages, and anti-inflammatory macrophages,
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also called M2 macrophages.4,5 The balance between
M1 and M2 plays a critical role in the phagocytosis of
pathogens, the clearance of apoptotic cells and the heal-
ing and remodeling of injured tissues.6

Almost immediately after implantation, macrophages
are recruited to biomaterials. Depending on the bioma-
terial specific characteristics, these macrophages will de-
termine the type and intensity of the host response.6,7

The eventual success of an implantable medical device
strongly depends on this response.

The host response after implantation is inter alia
guided by soluble factors such as cytokines and growth
factors, as communication agents between cells, active
in the wound healing process. Several studies point
out the cytokine classification according to their role
in the foreign body response.8–10 These soluble factors
are, among other cell types, produced by macrophages
and play pivotal roles in wound healing and serve as
useful markers of M1/M2 activation.7,10–12

The pivotal role of macrophages in the wound healing
process, including tissue repair or regeneration supported
by biomaterials, is a strong incentive to interrogate the
macrophage response, elicited by biomaterials, in well-
defined in vitro conditions, with reasonable prediction
of the complex foreign body reaction by using simpli-
fied single cell approaches. For this purpose, human
monocyte-derived macrophages, human monocyte cell
lines, mouse bone marrow-derived macrophages, and
murine macrophage cell lines are used as culture models.
In these models, it is examined whether biomaterials
elicit a proinflammatory, anti-inflammatory, prowound
healing, or an antiwound healing response by macro-
phages. These models support the first step to analyze
materials before use in the clinic. As nicely reviewed
by Sridharan et al.1 many different properties of the ma-
terial influence the polarization of the macrophage,
among others the mechanical properties, topography,
and surface chemistry. Since many types of biomaterials
are used in many different culture models with a large
variety of read-out parameters, the purpose of this re-
view was to provide an overview of which biomaterial
leads to which response, in particular regarding the dif-
ferentiation and activation of the macrophages and the
associated production of soluble factors.

Materials and Methods
Search methods
This systematic review was conducted in accordance to
the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines.

Search strategy and study selection
On the 29th of June 2015 a systematic literature search
was performed using Medline, EMBASE, Cochrane,
PUBMED, Google Scholar, and Web-of-Science libraries
(Supplementary Appendix S1). There were no restric-
tions used during the search based on the publication
year, publication language, and type of study. Two
researchers (G.S.A.B. and N.G.) screened all titles and
abstracts of the identified articles independently for
their relevance. From all articles that possibly met the
inclusion criteria, the full-text version was retrieved
and assessed for inclusion. Disagreement was resolved
by discussion or requesting advice from a third author
(Y.M.B.J.).

An article was eligible for inclusion when it reported on
macrophages and their response to biomaterials in an
in vitro model. Presentations, reviews, and letters to the
editor were not included. All references from the selected
articles were screened for further possible inclusions.

Data extraction and analysis
The extracted data are presented in separate tables. The
following information was retrieved from each study:
first author, year of publication, culture model, bioma-
terial, and cytokine expression. A meta-analysis could
not be performed due to the lack of sufficient compar-
ative studies and the important variability of the in vitro
macrophage models (e.g., cell origin and isolation pro-
cedure, culture conditions, markers).

Results
Search
After the exclusion of 2904 duplicates we identified 4275
references. After screening the titles and abstracts, we
excluded another 4169 articles. The other 106 articles
were regarded relevant and evaluated as full text. After
careful reviewing the full text, another 90 were excluded.
In addition seven articles were included via references,
resulting in 23 included articles (Fig. 1).

Culture models/experimental conditions
All included studies cultured monocytes or macrophages
on biomaterials. However, substantial differences were
found in cell culture conditions between the studies.
Monocytes isolated from a human buffy coat or
human peripheral blood were used in 19/23 of the stud-
ies.7,8,11,13–28 In the other four studies, one used mono-
cytes derived from mouse bone marrow,4 one used the
RAW 264.7 cell line (mouse leukaemia monocyte mac-
rophage cell line),9 and the other two used the THP-1
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human monocyte cell line10,29 (Table 1). In most of the
studies, no additional factors were added to the culture
medium. However, some also added soluble factors to
the media. Medium with lipopolysaccharides (LPS)
was the most common, but media also contained LPS/
interferon gamma (IFN-c), interleukin (IL)-4, IL-4/IL-
13, or monocyte chemotactic protein (MCP)-1/IL-6/
IFN-c. The culture time varied from 2 h to 14 days,
but the majority cultured for 1, 3, 7, and/or 10 days.

Biomaterials
Biomaterials can be divided into three groups namely
the nonbiodegradable polymers (synthetic), biodegrad-
able polymers (synthetic), and biologic materials.30 In
total 35 different materials were used in the included
articles (Table 2).

Nonbiodegradable synthetic polymers
Expanded polytetrafluoroethylene (ePTFE) and polyte-
trafluoroethylene (PTFE) are commonly applied hernia
mesh and vascular grafts materials. PTFE, also known
as Teflon�, is naturally hydrophobic and nonporous.
ePTFE is stretched and nano-porous and was intro-
duced under the trademark GORE-TEX�, in 1969.
Monocytes (precursors of macrophages) on PTFE pro-
duced low amounts of IL-1b and high amounts of
tumor necrosis factor (TNF)-a and IL-6 in the first

days of culture. IL-10 levels increased during culture
time, it was mainly produced between culture day 2
and 6.11,16 After a culture time for 8–10 days the produc-
tion of TNF-a and IL-10 decreased, while IL-8 increased
after 8 days of culture.16 Granulocyte-macrophage
colony-stimulating factor (GM-CSF) was secreted
during the whole culture time (1–10 days).11,16,18 Mac-
rophages on PTFE also produced platelet-derived
growth factor-BB, and matrix metalloproteinase 9 but
vascular endothelial growth factor (VEGF) was unde-
tectable.26 Macrophages on ePTFE produced more
proinflammatory cytokines (IL-1a, IL-1b, IL-6, and
TNF-a) and chemokines (MCP-1, MIP1-b, and MCP-
3) in association with an increase of the pore size of
the material.18 In contrast, immortalized human mono-
cyte cell line (THP-1) cultured on ePTFE induced an
anti-inflammatory and prowound healing profile char-
acterized by a high IL-10 production in another study.10

Current surgical applications of polyethylene tere-
phthalate (PET) are that is, surgical meshes, vascular
grafts, heart valves, and sutures. Macrophages on PET
produce predominantly proinflammatory cytokines,
MCP-3, TNF-a, IL-6, IL-1b, MIP-1a,7,8,31 and proin-
flammatory chemokine IL-8.31

PET is also used in combination with different
‘‘coatings.’’ These coatings affect biomaterial adherent
monocyte/macrophage cytokine expression through

FIG. 1. Study selection for relevant articles.

Table 1. Included Studies Cultured Monocytes
or Macrophages on Biomaterials

Author Year Cells

Almeida et al.13 2014 Human buffy coat
Ballotta et al.28 2014 Human buffy coat
Bartneck et al.14 2010 Human peripheral blood
Bartneck et al.15 2012 Human peripheral blood
Bhardwaj et al.16 2001 Human buffy coat
Bhattacharjee et al.17 2013 Human peripheral blood
Bota et al.18 2010 Human peripheral blood
Brodbeck et al.8 2002 Human peripheral blood
DeFife et al.19 1995 Human peripheral blood
Fearing et al.29 2014 THP-1 cell linea

Garg et al.4 2013 Mouse bone marrow-derived M/
Gretzer et al.20 2003 Human buffy coat
Grotenhuis et al.7 2013 Human buffy coat
Jones et al.21,31 2007 Human peripheral blood
Oliveira et al.22 2012 Human buffy coat
Orenstein et al.23 2009 Human peripheral blood
Orenstein et al.24,25 2010 Human peripheral blood
Schachtrupp et al.11 2003 Human buffy coat
Schutte et al.10 2009 THP-1 cell linea

Spiller et al.26 2014 Human buffy coat
Van den Beucken et al.9 2007 RAW 264.7 & J744A.1b

Wagner et al.27 2003 Human peripheral blood

aTHP human leukemic monocyte.
bRAW/J744 murine macrophage cell line.
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modification of surface chemistry. Different coat-
ings are used: PET + poly(styrene-co-benzyl N,N-
diethyldithiocarbamate) (BDEDTC; hydrophobic),
PET + BDEDTC + polyacrylamide (PAAm; hydrophilic
and neutral), PET + BDEDTC + sodium salt of poly(a-
crylic acid) (PAANa; hydrophilic and anionic), PET +
BDEDTC + methyl iodide of poly[3-(dimethylamino)
propyl]acrylamide (DMAPAAmMeI; hydrophilic and
cationic), and PET + absorbable, continuous and
hydrophilic collagen film (Parietex� Composite). Ma-
crophages on PAAm and PAANa surfaces reacted anti-
inflammatory with a higher IL-10 production and
lower IL-8 production than when cultured in PET
without coating during the culture time from day 3
till day 10.8,31 Monocytes adherent to PAAm produced
the most IL-6, IL-1b, IL-10, IL-8, and MIP-1b at all

time points, compared to the other coatings in combi-
nation with PET.31 Macrophages cultured for 3 to 7
days, produced the highest concentrations of IL-1b
on PAAm and least on BDEDTC. MIP-1b concentra-
tions were greatest with PAANa at day 3. DMAPAAm-
MeI promoted a decrease of IL-10 and IL-1RA in
macrophages, but it did not influence the expression
levels of IL-1b, TNF-a, and IL-6.7,29 BDEDTC,
PAAm, PAANa, and DMAPAAmMeI let the IL-1b,
TNF-a, and IL-6 expression levels relatively unchanged
at the end of culture time.8,31 Parietex Composite (Cov-
idien) induced high levels of proinflammatory and
anti-inflammatory proteins.7

Macrophages cultured on polyethylene (PE), with ver-
satile use such as catheters and joint prosthesis, produced
low amounts of cytokines in general but the balance

Table 2. Reviewed Biomaterials and Their Predominant Reaction

Biomaterial
Predominant reaction of macrophages

in contact with biomaterial
Low/high cytokine

production Refs.

PTFE Mainly proinflammatory High 10,15

ePTFE Proinflammatory and anti-inflammatory High/high 9,17,25

PET Mainly proinflammatory High 6,7,20

PET + BDEDTC Mainly proinflammatory High 7,20

PET + BDEDTC + PAAm Mainly anti-inflammatory High 7,20

PET + BDEDTC + PAANa Mainly anti-inflammatory High 7,20

PET + BDEDTC + DMAPAAmMeI Mainly proinflammatory High 7,20

Parietex� Composite Proinflammatory and anti-inflammatory High/high 6

Polyethylene Mainly anti-inflammatory Low 9,18

Polyurethane Proinflammatory and anti-inflammatory High/high 9,15,18

PFPE (small posts) Mainly proinflammatory High 13

PFPE (large posts) Mainly anti-inflammatory High 13

PP Proinflammatory and anti-inflammatory Low/low 6,26

PP + polyglactin Mainly proinflammatory High 10

Poly(ethylene glycol):poly(acrylate) Mainly anti-inflammatory Low 27

Poly-D-lysine-PAH Mainly proinflammatory Low 8

Silicone Proinflammatory and anti-inflammatory High/high 15

Polylactic acid Proinflammatory and anti-inflammatory High/high 12

Poly(ethylene oxide) Mainly proinflammatory High 14

Bio-A Mainly proinflammatory Low 23

Polydioxanone Mainly anti-inflammatory High 3

Poly-e-caprolactone bisurea Mainly anti-inflammatory High 27

Poly(urethane urea) Proinflammatory and anti-inflammatory Low/low 19

Collamend� Mainly proinflammatory High 24

Permacol� Mainly proinflammatory/proinflammatory
and anti-inflammatory

High/low 6,24

Allomax Mainly proinflammatory High 22,23

FlexHD Mainly proinflammatory High 22,23

Alloderm Mainly proinflammatory Low 22,23

Strattice� Mainly proinflammatory Low 24

Surgisis� Mainly proinflammatory Low 24

Collagen coating Mainly proinflammatory High 28

Ultrafoam Mainly proinflammatory Low 16,25

Silk Mainly proinflammatory High 16

Keratin Proinflammatory and anti-inflammatory Low/high 28

Chitosan Proinflammatory and anti-inflammatory Low/high 12,21

This table shows results coming from different macrophage models, not necessarily equivalents. The results are adapted generally from one study.
BDEDTC, poly(styrene-co-benzyl N,N-diethyldithiocarbamate); DMAPAAmMeI, methyl iodide of poly[3-(dimethylamino)propyl]acrylamide; ePTFE,

expanded polytetrafluoroethylene; PAAm, polyacrylamide; PAANa, sodium salt of poly(acrylic acid); PFPE, perfluoropolyether; PET, polyethylene tere-
phthalate; PP, polypropylene; PTFE, polytetrafluoroethylene.
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was more toward anti-inflammatory and prowound
healing cytokines.10,19 Both THP-1 cell line mono-
cytes/macrophages and macrophages isolated from
human buffy coats cultured on polyurethane (PU), often
used in blood contact applications, produced high levels
of anti-inflammatory and prowound healing cyto-
kines.10,16 Perfluoropolyether (PFPE) is a nondegrad-
able homopolymer that shows chemical inertness,
lipophobicity, and has very low surface energy.14 This
material was tested with different micro topographies
and the effect on the response of macrophages. Differ-
ent surface topographies resulted in different cytokine
production by macrophages. An M1 surface marker,
27E10, had an enhanced expression in response to
closely packed small posts, comparable to when macro-
phages were stimulated with LPS. In contrast, macro-
phages cultured on PFPE with large posts expressed
the M2 surface marker CD163 the most. Large posts
also resulted in significantly the highest M2-M1 index
based on macrophages surface markers.14

Poly(propylene) (PP) is also commonly used mesh and
suture materials in surgery. Both an anti-inflammatory
reaction characterized by high levels of CCL-18 and
IL1-RA among others and a proinflammatory reaction
characterized by production of IL-8, IL-6, and IL-1b by
macrophages seeded both for 24 h or 3 days on PP
were observed.7,27 When combined with polyglactin
910 materials (Vypro II�; Ethicon), monocyte/macro-
phages also released high amounts of TNF-a, IL-6,
and low amounts of IL-10 after 5 days of culture, which
indicates a proinflammatory response.11

Poly(ethylene glycol):poly(acrylate) PEG-g-PA is
also modified with cell adhesion promoting peptides
(YRGDS and YEILDV, peptides recognized by integ-
rins) to modulate the host cell response.27 Culturing
macrophages on PEG alone resulted in low production
of TNF-a, IL-1b, IL-6, and IL-8. Macrophages on pep-
tide modified PEG-g-PA produced even lower levels of
TNF-a and IL-6.27

Poly-D-lysine (PDL) and poly(allylamine hydrochlo-
ride) (PAH), both synthetic polymers, were coated
with DNA and seeded with two different cell line macro-
phages. All experiments showed decreased levels of
TNF-a compared with the cultured polymers with
LPS-stimulated murine macrophages (density of 1 · 105

cells/cm2).9 The cytokine secretion of IL-1b, IL-10, and
TGF-b1 was not different between macrophages cultured
on PDL and PAH with or without LPS stimulation.9

Monocytes on silicone cultured for 10 days produced
high GM-CSF and IL-8.16 TNF-a and IL-10 were pro-

duced at high levels the first 2–6 days, where after the
production decreased.16

Biodegradable synthetic polymers
Synthetic biodegradable polymers were first used as
biodegradable sutures in the 1960s. Synthetic biode-
gradable implants are mostly used in the clinic as
soft/hard tissue reinforcement materials or temporary
barriers/wound supports. Their purpose is to avoid a
chronic foreign body reaction.32 These polymeric bio-
materials are based on lactic acid and glycolic acid,
and other monomers, including dioxanone and tri-
methylene carbonate e-caprolactone as homopolymers
and copolymers.

Polylactic acid (PLA) induces production of IL-6, IL-
12/23, and IL-10, these cytokines are both proinflamma-
tory and anti-inflammatory, it appeared like human
monocytes cultured on PLA exhibited a heterogeneous
profile.13

Poly(D,L-lactide-co-glycolide) (PLGA) represents a
major class of materials widely used in surgical applica-
tions and tissue engineering.15 Bartneck et al. generated
3D nano-fibrous meshes in different porosities PLGA/
sP(EO-stat-PO) and a 2D NCO-sP(EO-stat-PO) hy-
drogel. NCO-sP(EO-stat-PO) and sP(EO-stat-PO) are
ethylene oxide-derived polymers, used for preventing
unspecific protein adsorption and cell adhesion.

Macrophages on the 2D materials formed clusters
with an elevated release of IL-1b and TNF-a. Macro-
phages produced more IL-8 and CCL-4 (proangiogenic
chemokines) on the more covered 3D nanofibers
PLGA/sP(EO-stat-PO).15

Macrophages seeded on a copolymer of glycolic acid
and trimethylene carbonate, also known as GORE�

BIO-A� Tissue Reinforcement (WL Gore Assoc),
produced very low proinflammatory cytokine levels.24

Polydioxanone (PDO) polymer is developed for biode-
gradable wound closure sutures. Bone marrow-derived
macrophages were cultured on different PDO diameter
fibers and pore sizes. An increase of the fiber/pore
size resulted in an increased expression of anti-
inflammatory and angiogenic markers as VEGF, TGF-
b, and FGF2.4

The impact of mechanical cues on adherent mono-
cytes on poly-e-caprolactone bisurea (PCL-U4U) was
investigated. It has been demonstrated that strain
affects macrophage response in terms of signaling and
differentiation. Moderate strain (7%) elicits polarization
toward a reparative M2 profile and enhance the expres-
sion of genes participating in the immune response.28

Boersema, et al.; BioResearch Open Access 2016, 5.1
http://online.liebertpub.com/doi/10.1089/biores.2015.0041

10



Poly(urethane urea) elicited very small amounts of
TNF-a and IL-10.20

Biologic materials
Biologic materials are either decellularized tissues such
as human or porcine skin or porcine small intestine
submucosa (SIS), or fabricated scaffolds or meshes
made of natural molecules such as collagen, chitosan,
silk, or keratin. The decellularized tissues can have ad-
ditional chemical cross-links to alter the degradation
speed.33

After 7 days of culture CollaMend� FM Implant
(Bard/Davol), a moderately chemically cross-linked por-
cine dermis, mostly elicited a proinflammatory response
in macrophages with high IL-1b, IL-6, IL-8, and VEGF
production.25 Macrophages on Permacol� (Covidien),
a slightly chemically cross-linked porcine dermal ma-
trix, produced high IL-1b, IL-6, IL-8, and VEGF levels
after 7 days of culture.25 But in other settings, low levels
of both proinflammatory and anti-inflammatory pro-
teins after 3 days of culture, were released by macro-
phages, in the presence of Permacol.7 There were no
differences in culture method between the two studies.
AlloMax� Surgical Graft (Bard/Davol) and FlexHD�

(Ethicon), nonchemically cross-linked decellularized
dermis but of human instead of porcine origin, also in-
duced mainly proinflammatory reactions with high
IL-1b, IL-6, IL-8, and VEGF cytokine production.23,24

AlloDerm� Regenerative Tissue Matrix (LifeCell) (non-
chemically cross-linked decellularized human dermis)
induced a lower proinflammatory response than the
other decellularized human dermis, characterized by
lower expression of IL-1b, IL-6, IL-8, and VEGF.23,24

Macrophages seeded on the noncross-linked porcine
dermis, Strattice� (LifeCell), or on the noncross-linked
porcine SIS, Cook� Biodesign� Surgisis� (Cook), pro-
duced low levels of IL-1b, IL-6, IL-8, and VEGF.25

Macrophages cultured on collagen coatings expressed
mostly M1 surface markers (CD86+) and express both
M1 and M2 markers.29,34 These macrophages pro-
duced also high levels of proinflammatory cytokines.
Another collagen-based biomaterial is Avitene� Ultra-
Foam� Collagen Sponge (Bard/Davol; bovine source
collagen sponge). Macrophages cultured on this gel
did not produce IL-1b, and IL-6 production was only
seen at day 1 and was lower produced at day 3, indicat-
ing that the response of the macrophages was not
proinflammatory.17

Other noncommercial biopolymers have been inves-
tigated. Bhattacharjee et al. studied the macrophage re-

sponses against silk-fibroin and silk-sericin-based 2D
films, and 3D silk-fibroin scaffolds.17 These scaffolds
are used for tissue engineering and drug delivery. The
3D fibroin scaffold induced gene expression of proin-
flammatory genes and accordingly the production of
IL-1b and IL-6. Silk-sericin films also induced IL1-b
gene expression.17

Two other biologic biomaterials are keratin and chito-
san. Keratin has been described for applications such as
tissue regeneration, hemostasis, and wound healing. A
low foreign body reaction against keratin was described
characterized with predominantly M2 (CD206+) macro-
phages, high levels of IL-10, and low levels of IL-1b and
IL-6.29 Chitosan (a natural polysaccharide composed of
randomly distributed b-(1–4)-linked D-glucosamine
and N-acetyl-D-glucosamine) induced an M2 phenotype
in one study based on low TNF-a that decreased with
time and high IL-10 and TGF-b1 levels cytokines.22 In
another study chitosan induces a predominant M1 re-
sponse based on high production of TNF-a and IL-12/
IL-23 and low expression of IL-6, especially in the 3D
geometry.13 Oliveira et al. cultured on chitosan films in-
stead of 3D geometry.13

Discussion
Macrophages are key components of tissue repair and
remodeling in wound healing. Their polarization ap-
pears to depend on the type of biomaterial and their
characteristics. The release of a variety of cytokines
and chemokines is decisive for the differentiation and
activity of monocytes.35 Here, we reviewed the macro-
phage response on different materials in vitro used
in tissue repair and regeneration and provided an over-
view of commonly seen macrophage responses to these
biomaterials.

Based on the literature review, we have shown that
the dimensions of the cultured material is of great influ-
ence on the response of macrophages. This was (mostly)
investigated in PFPE, ePTFE, chitosan, and PDO. The
association was, however, different between increasing
fiber/pore size and the polarization or release profile
of macrophages. Two synthetic biomaterials showed
the opposite effect of pore size. Bartneck et al. showed
a higher proinflammatory effect when the pore size
was smaller in PFPE.14 Bota et al. saw a higher proin-
flammatory effect of macrophages cultured on ePTFE
when the pores are larger.18 Almeida et al. saw the
same effect, on scaffolds based on chitosan, a biologic
material.13 In contrast, Garg et al. cultured macro-
phages on PDO, a synthetic biodegradable material,
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and they showed that large pores induced M2 pheno-
type and a decreased M1-marker expression. However,
in this study, mouse bone marrow-derived macro-
phages were used instead of human macrophages.
In an in vivo study with biodegradable pHEMA (2-
hydroxyethyl methacrylate) hydrogel scaffolds it was
also shown that pore size affect macrophage response.
Pore size of 34 lm was shown to reduce fibrous encap-
sulation, however, more M1 cells were found than at
those scaffolds with a larger pore size of 160 lm, this
indicate that the initial M1 response is necessary.36

As expected, macrophages on moderately chemically
cross-linked human or porcine dermis responded in
general proinflammatory with higher amounts of
proinflammatory cytokines than the macrophages cul-
tured on nonchemically cross-linked or slightly chem-
ically cross-linked materials. This was also seen in
in vivo studies were Collamend� FM Implant (Bard/
Davol) induced a chronic foreign body response and
downstream encapsulation.37,38 This mainly proin-
flammatory response lead to chronic fibrosis.39 Un-
fortunately, in all in vitro studies on these biologic
materials, only investigated IL-1b, IL-6, IL-8, and
VEGF, known for their mainly proinflammatory re-
sponse, no anti-inflammatory cytokines were mea-
sured. A recent review presented that moderately to
strongly cross-linked collagen materials can alter nor-
mal wound healing. In particular, residues of chemical
cross-links in the material were associated with a M1
macrophage response, and inhibition of M2 macro-
phage polarization.33

Chitosan, another biopolymer, showed a predomi-
nant M1 response with a very low IL-6 production.13

The same effect was seen on the collagen gel; mainly
proinflammatory cytokines were produced, but no pro-
duction of IL-1b.17 This can be considered a pleiotropic
function of IL-6 and IL-1b. It is known that IL-6 can
act either proinflammatory or anti-inflammatory,
depending on the environment.40 IL1-b is a key cyto-
kine that is important for wound healing, activating
and recruiting fibroblasts, resulting in expression of ex-
tracellular matrix components like collagen, elastin,
and glycosaminoglycans.41–43

Some materials induced different responses in differ-
ent experiments such as acellular human dermis from
different companies. This could be due to the differ-
ences in sterilization techniques that induce lasting bio-
chemical changes or residues of the chemical used for
sterilization; gamma radiation is used for AlloMax Sur-
gical Graft (Bard Davol); FlexHD (Ethicon) is sterilized

by detergents, disinfectants, and ethanol; and the ster-
ilization process of AlloDerm Regenerative Tissue
Matrix is proprietary. AlloDerm induced the least of
the proinflammatory cytokines. Also, the methods of
decellularization and processing of the materials were
different, which can be an additional explanation for
the different foreign body responses, notably explained
by chemical residues, used for decellularization and fat
removal.

Comparing all the responses of the different materi-
als, it appears that polyethylene, PET + PAAm, PET +
PAANa, PFPE (large posts), PEG-g-PA, and PDO al-
ways elicited an anti-inflammatory response in macro-
phages, irrespective of origin of the macrophages.

In vitro testing of macrophage response to biomate-
rial can be an initial means of assaying biocompatibility.
Macrophages are certainly great drivers of the acute in-
flammation reaction. Neutrophils (polymorphonuclear
leukocytes [PMNs]) also characterize acute inflamma-
tory response. Mast cell degranulation with histamine
release and fibrinogen adsorption is also known to
mediate acute inflammatory responses to implanted
biomaterials.44,45 For a complete in vitro model, these
factors should also be taken into account. For example,
Surgisis is known to strongly activate PMNs, particu-
larly neutrophils.46 Bryan et al. show a strong release
of Reactive Oxygen Species by Surgisis versus Alloderm
and Permacol, in animal models.47

In general, in vitro models are useful in the first
step to evaluate the foreign body reaction on surgical
biomaterials. Although it is difficult to simulate the
environment during a surgical procedure, an in vitro
model gives an indication of the initial foreign body
response even in an environment that simulates an in-
fection by, for instance, addition of LPS. Grotenhuis
et al. proved this by simulating a bacterial infection
in their in vitro model, but the macrophage response
remained biomaterial dependent.48 In this perspective
it will be useful to test, for example, other surgical bio-
materials like tissue adhesives that are used in the
clinic.

Because of the complexity of host response to foreign
body material it is difficult to predict the in vivo outcome
from in vitro assays. Wolf et al. developed an in silico
analysis by using an in vitro assay that characterized the
dynamic inflammatory response of human monocyte-
derived macrophages to biomaterials in combination
with quasi-mechanistic analysis.49 This approach can be
used to better predict the in vivo response. More sophis-
ticated systems, like multicellular approaches combining
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macrophages with fibroblasts, endothelial cells, and stem
cells, aiming at recreating a better mimicking system,
should certainly be useful for the in-depth investigation
of the behavior of materials in vivo.50

Simple models as single cell approaches should be
used for screening approaches, enabling the direct com-
parison of materials. Macrophage models can gain even
higher interest by including monocytes from specific
patient groups, like obesity, which may react differently
to materials.

Conclusion
With this review, we provided an overview of in vitro
responses of macrophages to many different biomate-
rials. Some materials performed comparable in differ-
ent studies and it appears clear which response these
biomaterials elicit in macrophages. Other materials be-
haved differently in different culture setups. Therefore,
all physical properties (e.g., stiffness, pore size, strain,
topography, and surface chemistry) of the biomaterial
must be announced, because these features can induce
different macrophage behavior.1,39 Each step in cell
culture is critical, the macrophage isolation, activation
of the macrophage before culture or not, time duration
of cell culture since it conditions the phenotype/
differentiation of cells, and the type of culture me-
dium, minimal changes in culture methods can cause
the different outcome.2,35,51,52 In vitro culture models
using macrophages on biomaterials are a valuable ad-
dition to the development of new biomaterials. Based
on this review there is, however, a need for standard-
ized culture models and a systematic comparison to
the in vivo response.
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Abbreviations Used
BDEDTC ¼ poly(styrene-co-benzyl N,N-diethyldithiocarbamate)

DMAPAAmMeI ¼ methyl iodide of poly[3-
(dimethylamino)propyl]acrylamide

ePTFE ¼ expanded polytetrafluoroethylene
GM-CSF ¼ granulocyte-macrophage colony-stimulating factor

IFN-c ¼ interferon gamma
IL ¼ interleukin

LPS ¼ lipopolysaccharides
MCP ¼ monocyte chemotactic protein

PAAm ¼ polyacrylamide
PAANa ¼ sodium salt of poly(acrylic acid)

PAH ¼ poly(allylamine hydrochloride)
PDL ¼ poly-D-lysine

PDO ¼ polydioxanone
PFPE ¼ perfluoropolyether

PLA ¼ polylactic acid
PLGA ¼ poly(D,L-lactide-co-glycolide)
PMNs ¼ polymorphonuclear leukocytes

PP ¼ polypropylene
PTFE ¼ polytetrafluoroethylene

SIS ¼ small intestine submucosa
TNF ¼ tumor necrosis factor

VEGF ¼ vascular endothelial growth factor
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