161 research outputs found

    Predictions for Higgs production at the Tevatron and the associated uncertainties

    Get PDF
    We update the theoretical predictions for the production cross sections of the Standard Model Higgs boson at the Fermilab Tevatron collider, focusing on the two main search channels, the gluon-gluon fusion mechanism ggHgg \to H and the Higgs-strahlung processes qqˉVHq \bar q \to VH with V=W/ZV=W/Z, including all relevant higher order QCD and electroweak corrections in perturbation theory. We then estimate the various uncertainties affecting these predictions: the scale uncertainties which are viewed as a measure of the unknown higher order effects, the uncertainties from the parton distribution functions and the related errors on the strong coupling constant, as well as the uncertainties due to the use of an effective theory approach in the determination of the radiative corrections in the ggHgg \to H process at next-to-next-to-leading order. We find that while the cross sections are well under control in the Higgs--strahlung processes, the theoretical uncertainties are rather large in the case of the gluon-gluon fusion channel, possibly shifting the central values of the next-to-next-to-leading order cross sections by more than 40\approx 40%. These uncertainties are thus significantly larger than the 10\approx 10% error assumed by the CDF and D0 experiments in their recent analysis that has excluded the Higgs mass range MH=M_H=162-166 GeV at the 95% confidence level. These exclusion limits should be, therefore, reconsidered in the light of these large theoretical uncertainties.Comment: 40 pages, 12 figures. A few typos are corrected and some updated numbers are provide

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in 2014 July. It pursues three core programs: the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2), Mapping Nearby Galaxies at APO (MaNGA), and the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). As well as its core program, eBOSS contains two major subprograms: the Time Domain Spectroscopic Survey (TDSS) and the SPectroscopic IDentification of ERosita Sources (SPIDERS). This paper describes the first data release from SDSS-IV, Data Release 13 (DR13). DR13 makes publicly available the first 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA. It includes new observations from eBOSS, completing the Sloan Extended QUasar, Emission-line galaxy, Luminous red galaxy Survey (SEQUELS), which also targeted variability-selected objects and X-ray-selected objects. DR13 includes new reductions of the SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification, and new reductions of the SDSS-III APOGEE-1 data, improving stellar parameters for dwarf stars and cooler stars. DR13 provides more robust and precise photometric calibrations. Value-added target catalogs relevant for eBOSS, TDSS, and SPIDERS and an updated red-clump catalog for APOGEE are also available. This paper describes the location and format of the data and provides references to important technical papers. The SDSS web site, http://www.sdss.org, provides links to the data, tutorials, examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6 yr operations of SDSS-IV

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in 2014 July. It pursues three core programs: the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2), Mapping Nearby Galaxies at APO (MaNGA), and the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). As well as its core program, eBOSS contains two major subprograms: the Time Domain Spectroscopic Survey (TDSS) and the SPectroscopic IDentification of ERosita Sources (SPIDERS). This paper describes the first data release from SDSS-IV, Data Release 13 (DR13). DR13 makes publicly available the first 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA. It includes new observations from eBOSS, completing the Sloan Extended QUasar, Emission-line galaxy, Luminous red galaxy Survey (SEQUELS), which also targeted variability-selected objects and X-ray-selected objects. DR13 includes new reductions of the SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification, and new reductions of the SDSS-III APOGEE-1 data, improving stellar parameters for dwarf stars and cooler stars. DR13 provides more robust and precise photometric calibrations. Value-added target catalogs relevant for eBOSS, TDSS, and SPIDERS and an updated red-clump catalog for APOGEE are also available. This paper describes the location and format of the data and provides references to important technical papers. The SDSS web site, http://www.sdss.org, provides links to the data, tutorials, examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ∼6 yr operations of SDSS-IV

    Burial Depth and Stolon Internode Length Independently Affect Survival of Small Clonal Fragments

    Get PDF
    Disturbance can fragment plant clones into different sizes and unstabilize soils to different degrees, so that clonal fragments of different sizes can be buried in soils at different depths. As a short-term storage organ, solon internode may help fragmented clones of stoloniferous plants to withstand deeper burial in soils. We address (1) whether burial in soils decreases survival and growth of small clonal fragments, and (2) whether increasing internode length increases survival and growth of small fragments under burial. We conducted an experiment with the stoloniferous, invasive herb Alternanthera philoxeroides, in which single-node fragments with stolon internode of 0, 2, 4 and 8 cm were buried in soils at 0, 2, 4 and 8 cm depth, respectively. Increasing burial depth significantly reduced survival of the A. philoxeroides plants and increased root to shoot ratio and total stolon length, but did not change growth measures. Increasing internode length significantly increased survival and growth measures, but there was no interaction effect with burial depth on any traits measured. These results indicate that reserves stored in stolon internodes can contribute to the fitness of the A. philoxeroides plants subject to disturbance. Although burial reduced the regeneration capacity of the A. philoxeroides plants, the species may maintain the fitness by changing biomass allocation and stolon length once it survived the burial. Such responses may play an important role for A. philoxeroides in establishment and invasiveness in frequently disturbed habitats

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2,MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA,the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. In addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions ofthe SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE.This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. The SDSS website, http://www.sdss.org, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.PostprintPeer reviewe

    stairs and fire

    Get PDF

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    Détermination de la masse des neutrinos cosmologiques avec les forêts Lyman-alpha

    No full text
    In the work presented in this thesis, I use the power spectrum of the transmitted flux in the Lyman-alpha (Ly-α) forest of distant quasars to constrain the mass of cosmological neutrinos in the context of four seperate projects. Neutrinos leave a signature imprint on large scale structures in the Universe through their free-streaming, which manifests as a deficit of matter density fluctuations on typical length scales that are inversely proportional to their rest mass. This typical free-streeming scale, of order a few Mpc, can be probed by Ly-α forests which are imprints of the neutral atomic Hydrogen density along the background quasar's line-of-sight. I use the Ly-α flux power spectrum from mainly two large scale structure surveys: the 13,821 low-resolution quasar spectra from the ninth data release of SDSS (BOSS) in 12 redshift bins from langle z rangle = 2.2 to 4.4; and the 100 high-resolution quasar spectra from the XQ-100 survey (of the VLT's XShooter spectrograph) in 3 redshift bins, langle z rangle = 3.20, 3.56 and 3.93. This enables us to probe scales from k ⩾ 0.001~s/km to k ⩽ 0.02 and k ⩽ 0.07~ s/km respectively. Modeling the flux power spectrum requires solving the non-linear regime of structure formation and the intergalactic gas in the cosmological hydrodynamics simulations that are used to that effect. I controlled for several of many systematic uncertainties related to the simulations. First, I ran simulations with different initial conditions to quantify the sampling variance. I then tested the accuracy of a splicing technique that we use to construct the flux power spectrum from lower size and lower resolution simulations. This required producing a complete run of a (100~h⁻¹Mpc)³ comoving cube containing 2 x 2048³ dark matter particles and baryons. This enabled our working group to enhance the previously established constraints on the sum of neutrino masses from ∑ mν≺0.15~eV to the most stringent constraint to date ∑ mν≺0.12~eV with 95% confidence. I then worked on implementing right-handed neutrinos in non-cold dark matter cosmological frameworks. A substancial amount of work has gone into applying plausible initial conditions that would accurately model the free-streaming effect of these types of particles. I put the most stringest constraints (at the time of publication) on the mass of non-resonantly produced sterile neutrinos as pure warm dark matter candidates, mν ≲ 25~keV at 95% confidence. I extended this investigation into a mixed warm plus cold dark matter cosmology. Finally, I implement right-handed neutrinos produced in presence of a lepton asymmetry which boosts their production and lowers their free-streaming scale. I started a collaboration with a team of theoretical physicists involved in searching for astrophysical evidence for the existance of such resonantly-produced right-handed neutrinos in dark matter rich systems. Our new-born collaboration has enabled the first ever constraints on their mass using the Ly-α forest power spectrum.Les travaux présentés dans cette thèse contraignent la masse des neutrinos dans le contexte de 4 modèles de matière noire en utilisant le spectre de puissance du flux transmit dans les forêts Lyman-alpha des quasars distants. Les neutrinos laissent une emprunte sur les grandes structures dans l'Univers à travers l'échelle à laquelle ils diffusent, qui se manifeste comme un déficit de fluctuations de densité de matière sur des distances inversement proportionnelles à leur masse. De l'ordre de quelques Mpc, ces échelles peuvent être sondées par les forêts Ly-α qui tracent la densité d'hydrogène neutre atomique suivant la ligne de visée du quasar en arrière-plan. J'utilise le spectre de puissance Ly-α construit grâce à deux relevés de grandes structures: les 13,821 spectres optiques de quasars basse-résolution de la 9ème publication des données du SDSS/BOSS à 12 redshifts de langle z rangle = 2.2 à 4.4; ainsi que la centaine de spectres de quasar haute-résolution du relevé XQ-100 du VLT à langle z rangle = 3.20, 3.56 et 3.93. Ces deux relevés nous permettent de sonder les échelles de k ⩾ 0.001~s/km à k ⩽ 0.02 et k ⩽ 0.07~ s/km respectivement. Modéliser le spectre de puissance Ly-α nécessite résoudre le régime non-linéaire de formation des structure et modéliser le gaz inter-galactique dans les simulations cosmologiques hydrodynamiques destinées à cet effet. Je contrôle pour plusieurs incertitudes systématiques liées à ces simulations. Dans un premier temps, je quantifie la variance d'échantillonnage à l'aide de simulations tournées avec différentes conditions initiales. Dans un second temps, je teste la validité d'une méthode permettant de construire le spectre de puissance à partir de simulations plus petites et moins résolues. Pour ce, j'ai tourné une simulation évoluant 2 x 2048³ particules de matière noire et de baryons dans un covolume de (100~h⁻¹Mpc)³. Ce travail a permit à notre groupe d'améliorer les contraintes sur la masse des neutrinos de ∑ mν≺0.15~eV établie précédemment à ∑ mν≺0.12~eV à 95% de vraisemblance. J'ai ensuite tourné mes efforts vers l'implémentation de neutrinos stériles en tant qu'un candidat matière noire non-froide dans les simulations. En particulier, j'ai produit les contraintes les plus fortes (au moment de la publication) sur la masse des neutrinos stériles en tant que matière noire tiède: mν ≲ 25~keV à 95% de vraisemblance. J'ai étendu l'étude dans le contexte d'une matière noire mixte et contraint l'abondance relative de la composante tiède par rapport à la froide. Enfin, j'ai complété ce travail en permettant une résonance dans la production des neutrinos stériles, réduisant ainsi leur échelle caractéristique de diffusion et refroidissant la matière tiède qu'ils incorporent. A ce but, j'ai initié une collaboration avec une équipe de physiciens théoriques impliqués dans les recherches astrophysiques de ces neutrinos stériles dits produits par résonance dans des objets riches en matière noire. Notre jeune collaboration a établi les premières contraintes sur leur masse en utilisant le spectre de puissance Ly-α
    corecore