78 research outputs found

    Negative cerium anomalies in manganese (hydr)oxide precipitates due to cerium oxidation in the presence of dissolved siderophores

    Get PDF
    International audienceWe present experimental results on the sorption behavior of rare earth elements and yttrium (REY) on precipitating manganese (hydr)oxide in the presence of the biogenic siderophore desferrioxamine B (DFOB). In marked contrast to inorganic systems, where preferential adsorption of HREY and depletion of LREY is commonly observed in manganese (hydr)oxide precipitates, sorption of REY in presence of the DFOB siderophore leads to HREY-depleted and LREY-enriched patterns in the precipitates. Moreover, our data indicate that surface oxidation of Ce(III) to Ce(IV) during sorption onto manganese (hydr)oxides and the resulting development of a positive Ce anomaly, which are commonly observed in inorganic experiments, are prevented in the presence of DFOB. Instead, Ce(III) is oxidized to Ce(IV) but associated with the dissolved desferrioxamine B which forms complexes with Ce(IV), that are at least twenty orders of magnitude more stable than those with Ce(III) and REY(III). The overall result is the formation of a positive Ce anomaly in the solution and a negative Ce anomaly in the Mn (hydr)oxides. The distribution of the strictly trivalent REY and Eu(III) between the manganese (hydr)oxide phase and the remaining ambient solution mimics the distribution of published stability constants for complexes of REY(III) with DFOB, i.e. the heavy REY form more stable complexes with the ligand and hence are better shielded from sorption than the LREY. Surface complexation modeling corroborates our experimental results. Negative Ce anomalies in Mn precipitates have been described from biogenic Mn oxides. Our results provide experimental evidence for the development of negative Ce anomalies in abiogenic Mn (hydr)oxide precipitates and show that the presence of the widespread siderophore desferrioxamine B during mineral precipitation results in HREY-depleted Mn (hydr)oxides with negative Ce anomalies

    G-stalt: A chirocentric, spatiotemporal, and telekinetic gestural interface

    Get PDF
    In this paper we present g-stalt, a gestural interface for interacting with video. g-stalt is built upon the g-speak spatial operating environment (SOE) from Oblong Industries. The version of g-stalt presented here is realized as a three-dimensional graphical space filled with over 60 cartoons. These cartoons can be viewed and rearranged along with their metadata using a specialized gesture set. g-stalt is designed to be chirocentric, spatiotemporal, and telekinetic.Oblong IndustriesMassachusetts Institute of Technology. Media Laborator

    Star Formation at 4<z<64 < z < 6 From the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH)

    Get PDF
    Using the first 50% of data collected for the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) observations on the 1.8 deg2^2 Cosmological Evolution Survey (COSMOS) we estimate the masses and star formation rates of 3398 M∗>1010M⊙M_*>10^{10}M_\odot star-forming galaxies at 4<z<64 < z < 6 with a substantial population up to M∗≳1011.5M⊙M_* \gtrsim 10^{11.5} M_\odot. We find that the strong correlation between stellar mass and star formation rate seen at lower redshift (the "main sequence" of star-forming galaxies) extends to z∌6z\sim6. The observed relation and scatter is consistent with a continued increase in star formation rate at fixed mass in line with extrapolations from lower-redshift observations. It is difficult to explain this continued correlation, especially for the most massive systems, unless the most massive galaxies are forming stars near their Eddington-limited rate from their first collapse. Furthermore, we find no evidence for moderate quenching at higher masses, indicating quenching either has not occurred prior to z∌6z \sim 6 or else occurs rapidly, so that few galaxies are visible in transition between star-forming and quenched.Comment: ApJL, accepte

    Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea : indicators of sub-seafloor hydrothermal processes in back-arc basins

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 74 (2010): 5494-5513, doi:10.1016/j.gca.2010.07.003.Rare earth element (REE) concentrations are reported for a large suite of seafloor vent fluids from four hydrothermal systems in the Manus back–arc basin (Vienna Woods, PACMANUS, DESMOS and SuSu Knolls vent areas). Sampled vent fluids show a wide range of absolute REE concentrations and chondrite–normalized (REEN) distribution patterns (LaN/SmN ~ 0.6 – 11; LaN/YbN ~ 0.6 – 71; EuN/Eu*N ~ 1 – 55). REEN distribution patterns in different vent fluids range from light–REE enriched, to mid– and heavy–REE enriched, to flat, and have a range of positive Eu–anomalies. This heterogeneity contrasts markedly with relatively uniform REEN distribution patterns of mid–ocean ridge hydrothermal fluids. In Manus Basin fluids, aqueous REE compositions do not inherit directly or show a clear relationship with the REE compositions of primary crustal rocks with which hydrothermal fluids interact. These results suggest that the REEs are less sensitive indicators of primary crustal rock composition despite crustal rocks being the dominant source of REEs in submarine hydrothermal fluids. In contrast, differences in aqueous REE compositions are consistently correlated with differences in fluid pH and ligand (chloride, fluoride and sulfate) concentrations. Our results suggest that the REEs can be used as an indicator of the type of magmatic acid volatile (i.e., presence of HF, SO2) degassing in submarine hydrothermal systems. Additional fluid data suggest that near seafloor mixing between high–temperature hydrothermal fluid and locally entrained seawater at many vent areas in the Manus Basin causes anhydrite precipitation. Anhydrite effectively incorporates REE and likely affects measured fluid REE concentrations, but does not affect their relative distributions.This study received financial support from the Ocean Drilling Program Schlanger Fellowship (to P.R. Craddock), the WHOI Deep Ocean Exploration Institute Graduate Fellowship (to E. Reeves) and NSF grant OCE–0327448

    COSMOS2020: Exploring the dawn of quenching for massive galaxies at 3 < z < 5 with a new colour selection method

    Full text link
    We select and characterise a sample of massive (log(M∗/_{*}/M⊙)>10.6_{\odot})>10.6) quiescent galaxies (QGs) at 3<z<53<z<5 in the latest COSMOS2020 catalogue. QGs are selected using a new rest-frame colour selection method, based on their probability of belonging to the quiescent group defined by a Gaussian Mixture Model (GMM) trained on rest-frame colours (NUV−U,U−V,V−JNUV-U, U-V, V-J) of similarly massive galaxies at 2<z<32<z<3. We calculate the quiescent probability threshold above which a galaxy is classified as quiescent using simulated galaxies from the SHARK semi-analytical model. We find that at z≄3z\geq3 in SHARK, the GMM/NUVU−VJNUVU-VJ method out-performs classical rest-frame UVJUVJ selection and is a viable alternative. We select galaxies as quiescent based on their probability in COSMOS2020 at 3<z<53<z<5, and compare the selected sample to both UVJUVJ and NUVrJNUVrJ selected samples. We find that although the new selection matches UVJUVJ and NUVrJNUVrJ in number, the overlap between colour selections is only ∌50−80%\sim50-80\%, implying that rest-frame colour commonly used at lower redshifts selections cannot be equivalently used at z>3z>3. We compute median rest-frame SEDs for our sample and find the median quiescent galaxy at 3<z<53<z<5 has a strong Balmer/4000 Angstrom break, and residual NUVNUV flux indicating recent quenching. We find the number densities of the entire quiescent population (including post-starbursts) more than doubles from 3.5±2.2×10−63.5\pm2.2\times10^{-6} Mpc−3^{-3} at 4<z<54<z<5 to 1.4±0.4×10−51.4\pm0.4\times10^{-5} Mpc−3^{-3} at 3<z<43<z<4, confirming that the onset of massive galaxy quenching occurs as early as 3<z<53<z<5.Comment: 19 pages, 10 figures + appendix. Accepted for publication in AJ. Both the GMM model and code to calculate quiescent probabilities from rest frame flux densities are made available online at https://github.com/kmlgould/GMM-quiescen

    Synthetic Amorphous Silicon Dioxide (NM-200, NM-201, NM-202, NM-203, NM-204): Characterisation and Physico-Chemical Properties

    Get PDF
    The European Commission's Joint Research Centre (JRC) provides scientific support to European Union policy including nanotechnology. Within this context, the JRC launched, in February 2011, a repository for Representative Test Materials (RTMs), based on preparatory work started in 2008. It supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials (WPMN). The WPMN leads an exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The purpose is to understand the applicability of the OECD Test Guidelines for the testing of nanomaterials as well as end-points relevant for such materials. The Repository responds to a need for nanosafety research purposes: availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The availability of representative nanomaterials to the international scientific community furthermore enhances and enables development of safe materials and products. The present report presents the physico-chemical characterisation of the synthetic amorphous silicon dioxide (SiO2, SAS) from the JRC repository: NM-200, NM-201, NM-202, NM-203 and NM-204. NM-200 was selected as principal material for the OECD test programme "Testing a representative set of manufactured nanomaterials". NM-200, NM-201 and NM-204 (precipitated SAS) are produced via the precipitation process, whereas NM-202 and NM-203 (fumed or pyrogenic SAS) are produced via a high temperature process. Each of these NMs originates from one respective batch of commercially manufactured SAS. They are nanostructured, i.e. they consist of aggregated primary particles. The SAS NMs may be used as a representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results for more than 15 endpoints are addressed in the present report, including physical-chemical properties, such as size and size distribution, crystallite size and electron microscopy images. Sample and test item preparation procedures are addressed. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action, as well as the JRC.JRC.I.4-Nanobioscience

    Multi-walled Carbon Nanotubes, NM-400, NM-401, NM-402, NM-403: Characterisation and Physico-Chemical Properties

    Get PDF
    In 2011 the JRC launched a Repository for Representative Test Materials that supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials' (WPMN) exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The JRC Repository responds to a need for availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The present report presents the physico-chemical characterisation of the multi-walled carbon nanotubes (MWCNT) from the JRC Repository: NM-400, NM-401, NM-402 and NM-403. NM-400 was selected as principal material for the OECD WPMN testing programme. They are produced by catalytic chemical vapour deposition. Each of these NMs originates from one respective batch of commercially manufactured MWCNT. They are nanostructured, i.e. they consist of more than one graphene layer stacked on each other and rolled together as concentric tubes. The MWCNT NMs may be used as a representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action.JRC.I.4-Nanobioscience

    Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico-Chemical Properties

    Get PDF
    The European Commission's Joint Research Centre (JRC) provides scientific support to European Union policy including nanotechnology. Within this context, the JRC launched, in February 2011, a repository for Representative Test Materials (RTMs), based on preparatory work started in 2008. It supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials (WPMN). The WPMN leads an exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The purpose is to understand the applicability of the OECD Test Guidelines for the testing of nanomaterials as well as end-points relevant for such materials. The Repository responds to a need for nanosafety research purposes: availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The availability of representative nanomaterials to the international scientific community furthermore enhances and enables development of safe materials and products. The present report presents the physico-chemical characterisation of the Titanium dioxide series from the JRC repository: NM-100, NM-101, NM-102, NM-103, NM-104 and NM-105. NM-105 was selected as principal material for the OECD test programme "Testing a representative set of manufactured nanomaterials". NM-100 is included in the series as a bulk comparator. Each of these NMs originates from one batch of commercially manufactured TiO2. The TiO2 NMs may be used as representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results for more than 15 endpoints are addressed in the present report, including physico-chemical properties, such as size and size distribution, crystallite size and electron microscopy images. Sample and test item preparation procedures are addressed. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action, as well as by the JRC.JRC.I.4-Nanobioscience

    Supporting stimulation needs in dementia care through wall-sized displays

    Get PDF
    Beside reminiscing, the increasing cognitive decline in dementia can also be addressed through sensory stimulation allowing the immediate, nonverbal engagement with the world through one’s senses. Much HCI work has prioritized cognitive stimulation for reminiscing or personhood often on small screens, while less research has explored sensory stimulation like the one enabled by large displays. We describe a year-long deployment in a residential care home of a wall-sized display, and explored its domestication through 24 contextual interviews. Findings indicate strong engagement and attachment to the display which has inspired four psychosocial interventions using online generic content. We discuss the value of these findings for personhood through residents’ exercise of choices, the tension between generic/personal content and its public/private use, the importance of participatory research approach to domestication, and the infrastructure-based prototype, illustrated by the DementiaWall and its generative quality
    • 

    corecore