509 research outputs found

    Modulation of Human Immunodeficiency Virus 1 Replication by Interferon Regulatory Factors

    Get PDF
    Transcription of the human immunodeficiency virus (HIV)-1 is controlled by the cooperation of virally encoded and host regulatory proteins. The Tat protein is essential for viral replication, however, expression of Tat after virus entry requires HIV-1 promoter activation. A sequence in the 5′ HIV-1 LTR, containing a binding site for transcription factors of the interferon regulatory factors (IRF) family has been suggested to be critical for HIV-1 transcription and replication. Here we show that IRF-1 activates HIV-1 LTR transcription in a dose-dependent fashion and in the absence of Tat. This has biological significance since IRF-1 is produced early upon virus entry, both in cell lines and in primary CD4+ T cells, and before expression of Tat. IRF-1 also cooperates with Tat in amplifying virus gene transcription and replication. This cooperation depends upon a physical interaction that is blocked by overexpression of IRF-8, the natural repressor of IRF-1, and, in turn is released by overexpression of IRF-1. These data suggest a key role of IRF-1 in the early phase of viral replication and/or during viral reactivation from latency, when viral transactivators are absent or present at very low levels, and suggest that the interplay between IRF-1 and IRF-8 may play a key role in virus latency

    Sporadic ALS is not associated with VAPB gene mutations in Southern Italy

    Get PDF
    Mutations in the Cu/Zn superoxide dismutase (Sod1) gene have been reported to cause adult-onset autosomal dominant Amyotrophic Lateral Sclerosis (FALS). In sporadic cases (SALS) de novo mutations in the Sod1 gene have occasionally been observed. The recent finding of a mutation in the VAMP/synaptobrevin-associated membrane protein B (VAPB) gene as the cause of amyotrophic lateral sclerosis (ALS8), prompted us to investigate the entire coding region of this gene in SALS patients. One hundred twenty-five unrelated patients with adult-onset ALS and 150 healthy sex-age-matched subjects with the same genetic background were analyzed. Genetic analysis for all exons of the VAPB gene by DHPLC revealed 5 variant profiles in 83 out of 125 SALS patients. Direct sequencing of these PCR products revealed 3 nucleotide substitutions. Two of these were found within intron 3 of the gene, harbouring 4 variant DHPLC profiles. The third nucleotide variation (Asp130Glu) was the only substitution present in the coding region of the VAPB gene, and it occurred within exon 4. It was found in three patients out of 125. The frequency of the detected exon variation in the VAPB gene was not significantly different between patients and controls. In conclusion, our study suggests that VAPB mutations are not a common cause of adult-onset SALS

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    HIV-1 Latency: An Update of Molecular Mechanisms and Therapeutic Strategies

    No full text
    The major obstacle towards HIV-1 eradication is the life-long persistence of the virus in reservoirs of latently infected cells. In these cells the proviral DNA is integrated in the host’s genome but it does not actively replicate, becoming invisible to the host immune system and unaffected by existing antiviral drugs. Rebound of viremia and recovery of systemic infection that follows interruption of therapy, necessitates life-long treatments with problems of compliance, toxicity, and untenable costs, especially in developing countries where the infection hits worst. Extensive research efforts have led to the proposal and preliminary testing of several anti-latency compounds, however, overall, eradication strategies have had, so far, limited clinical success while posing several risks for patients. This review will briefly summarize the more recent advances in the elucidation of mechanisms that regulates the establishment/maintenance of latency and therapeutic strategies currently under evaluation in order to eradicate HIV persistence

    An integrated approach identifies IFN-regulated microRNAs and targeted mRNAs modulated by different HCV replicon clones

    Get PDF
    Abstract Background Infections with hepatitis C virus (HCV) progress to chronic phase in 80% of patients. To date, the effect produced by HCV on the expression of microRNAs (miRs) involved in the interferon-β (IFN-β) antiviral pathway has not been explored in details. Thus, we compared the expression profile of 24 selected miRs in IFN-β-treated Huh-7 cells and in three different clones of Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system). Methods The expression profile of 24 selected miRs in IFN-β-treated Huh-7 cells and in HCV replicon 21-5 clone with respect to Huh-7 parental cells was analysed by real-time PCR. To exclude clone specific variations, the level of 16 out of 24 miRs, found to be modulated in 21-5 clone, was evaluated in two other HCV replicon clones, 22-6 and 21-7. Prediction of target genes of 3 miRs, confirmed in all HCV clones, was performed by means of miRGator program. The gene dataset obtained from microarray analysis of HCV clones was farther used to validate target prediction. Results The expression profile revealed that 16 out of 24 miRs were modulated in HCV replicon clone 21-5. Analysis in HCV replicon clones 22-6 and 21-7 indicated that 3 out of 16 miRs, (miR-128a, miR-196a and miR-142-3p) were modulated in a concerted fashion in all three HCV clones. Microarray analysis revealed that 37 out of 1981 genes, predicted targets of the 3 miRs, showed an inverse expression relationship with the corresponding miR in HCV clones, as expected for true targets. Classification of the 37 genes by Panther System indicated that the dataset contains genes involved in biological processes that sustain HCV replication and/or in pathways potentially implicated in the control of antiviral response by HCV infection. Conclusions The present findings reveal that 3 IFN-β-regulated miRs and 37 genes, which are likely their functional targets, were commonly modulated by HCV in three replicon clones. The future use of miR inhibitors or mimics and/or siRNAs might be useful for the development of diagnostic and therapeutic strategies aimed at the recovering of protective innate responses in HCV infections.</p
    corecore