273 research outputs found

    Non-linear Isolator for Vibration and Force Transmission Control of Unbalanced Rotating Machines

    Get PDF
    Purpose: The objective of this paper is to investigate with simulations how non-linear spring and non-linear damper components of isolators can be employed to effectively reduce both the oscillations and the force transmitted to ground in the whole spinning range of unbalanced rotating machines. Methods: The principal goal of this paper is twofold. First, to present a concise and consistent formulation based on the harmonic balance approach for the vibration response of spinning machines mounted on linear/non-linear, softening/hardening, un-tensioned/pre-tensioned springs and linear/non-linear dampers. Second, to provide a comprehensive overview of the vibration and force transmission control with non-linear isolators specifically tailored to unbalanced machines. Results: The study has shown that, the best vibration isolation is provided by a pre-tensioned linear and cubic softening spring combined with a linear and negative quadratic damper. The pre-tensioned spring should be designed in such a way as it holds the weight of the machine and thus produces on the vibrating machine a symmetric elastic restoring force proportional to the linear and cubic powers of the displacement. The cubic softening stiffness should then be tuned to minimise the frequency, and thus the amplitude, of the resonant response of the fundamental mode of the machine and elastic suspension system, while preserving stability and a desired static deflection. In parallel, to reduce the force transmission to ground above the fundamental resonance frequency, the negative quadratic damping effect should be tailored to maximize the energy absorption at higher frequencies. Conclusion: The study has shown that non-linear spring and non-linear damper components can be effectively employed to control the vibration and force transmission in the whole spinning range of the machine. In particular, a pre-tensioned softening cubic non-linear spring can be used to mitigate the vibration and force transmission at low frequencies, close to the fundamental natural frequencies of the elastically suspended machine. Also, a negative quadratic non-linear damper can be used to tailor the energy dissipation of the isolator in such a way as to have high damping at low frequencies and low damping at higher frequencies, which enhances the vibration and force transmission control at low frequencies and, rather importantly, mitigates the force transmission at higher frequencies

    A Clostridium difficile outbreak in an Italian hospital: The efficacy of the multi-disciplinary and multifaceted approach

    Get PDF
    Introduction. We described an outbreak of C. difficile that occurred in the Internal Medicine department of an Italian hospital and assessed the efficacy of the measures adopted to manage the outbreak. Methods. The outbreak involved 15 patients and was identified by means of continuous integrated microbiological surveillance, starting with laboratory data (alert organism surveillance). Diarrheal fecal samples from patients with suspected infection by C. difficile underwent rapid membrane immuno-enzymatic testing, which detects both the presence of the glutamate dehydrogenase antigen and the presence of the A and B toxins. Extensive microbiological sampling was carried out both before and after sanitation of the environment, in order to assess the efficacy of the sanitation procedure. Results. The outbreak lasted one and a half month, during which time the Committee for the Prevention of Hospital Infections ordered the implementation of multiple interventions, which enabled the outbreak to be controlled and the occurrence of new cases to be progressively prevented. The strategies adopted mainly involved patient isolation, reinforcement of proper hand hygiene techniques, antimicrobial stewardship and environmental decontamination by means of chlorine-based products. Moreover, the multifaceted management of the outbreak involved numerous sessions of instruction/training for nursing staff and socio-sanitary operatives during the outbreak. Sampling of environmental surfaces enabled two sites contaminated by C. difficile to be identified. Conclusions. Joint planning of multiple infection control practices, together with effective communication and collaboration between the Hospital Infections Committee and the ward involved proved to be successful in controlling the outbreak

    Planar AFM macro-probes to study the biomechanical properties of large cells and 3D cell spheroids

    Get PDF
    The ability to measure mechanical response of cells under applied load is essential for developing more accurate models of cell mechanics and mechanotransduction. Living cells have been mechanically investigated by several approaches. Among them, atomic force microscopy (AFM) is widely used thanks to its high versatility and sensitivity. In the case of large cells or 3D multicellular aggregates, standard AFM probes may not be appropriate to investigate the mechanical properties of the whole biological system. Owing to their size, standard AFM probes can compress only a single somatic cell or part of it. To fill this gap, we have designed and fabricated planar AFM macro-probes compatible with commercial AFM instruments. The probes are constituted of a large flat compression plate, connected to the chip by two flexible arms, whose mechanical characteristics are tuned for specific biological applications. As proof of concept, we have used the macro-probes to measure the viscoelasticity of large spherical biological systems, which have a diameter above 100 \u3bcm: human oocytes and 3D cell spheroids. Compression experiments are combined with visual inspection, using a side-view configuration imaging, which allows us to monitor the sample morphology during the compression and to correlate it with the viscoelastic parameters. Our measurements provide a quantitative estimate of the relaxation times of such biological systems, which are discussed in relation to data present in literature. The broad applicability of the AFM macro-probes can be relevant to study the biomechanical features in any biological process involving large soft materials. Statement of Significance: The understanding of the role of physical factors in defining cell and tissue functions requires to develop new methods or improve the existing ones to accurately measure the biomechanical properties. AFM is a sensitive and versatile tool to measure the mechanical features from single proteins to single cells. When cells or cell aggregates exceed few tens of microns, AFM suffers from limitations. On these biological systems the control of the contact area and the application of a precise uniform compression becomes crucial. A modification of the standard cantilevers fabrication allowed us obtaining AFM macro-probes, having large planar contact area and spring constant suitable for biological investigations. They were demonstrated valuable to characterize the mechanical properties of large hierarchical biological systems

    Start of SPIDER operation towards ITER neutral beams

    Get PDF
    Heating Neutral Beam (HNB) Injectors will constitute the main plasma heating and current drive tool both in ITER and JT60-SA, which are the next major experimental steps for demonstrating nuclear fusion as viable energy source. In ITER, in order to achieve the required thermonuclear fusion power gain Q=10 for short pulse operation and Q=5 for long pulse operation (up to 3600s), two HNB injectors will be needed [1], each delivering a total power of about 16.5 MW into the magnetically-confined plasma, by means of neutral hydrogen or deuterium particles having a specific energy of about 1 MeV. Since only negatively charged particles can be efficiently neutralized at such energy, the ITER HNB injectors [2] will be based on negative ions, generated by caesium-catalysed surface conversion of atoms in a radio-frequency driven plasma source. A negative deuterium ion current of more than 40 A will be extracted, accelerated and focused in a multi-aperture, multi-stage electrostatic accelerator, having 1280 apertures (~ 14 mm diam.) and 5 acceleration stages (~200 kV each) [3]. After passing through a narrow gas-cell neutralizer, the residual ions will be deflected and discarded, whereas the neutralized particles will continue their trajectory through a duct into the tokamak vessels to deliver the required heating power to the ITER plasma for a pulse duration of about 3600 s. Although the operating principles and the implementation of the most critical parts of the injector have been tested in different experiments, the ITER NBI requirements have never been simultaneously attained. In order to reduce the risks and to optimize the design and operating procedures of the HNB for ITER, a dedicated Neutral Beam Test Facility (NBTF) [4] has been promoted by the ITER Organization with the contribution of the European Union\u2019s Joint Undertaking for ITER and of the Italian Government, with the participation of the Japanese and Indian Domestic Agencies (JADA and INDA) and of several European laboratories, such as IPP-Garching, KIT-Karlsruhe, CCFE-Culham, CEA-Cadarache. The NBTF, nicknamed PRIMA, has been set up at Consorzio RFX in Padova, Italy [5]. The planned experiments will verify continuous HNB operation for one hour, under stringent requirements for beam divergence (< 7 mrad) and aiming (within 2 mrad). To study and optimise HNB performances, the NBTF includes two experiments: MITICA, full-scale NBI prototype with 1 MeV particle energy and SPIDER, with 100 keV particle energy and 40 A current, aiming at testing and optimizing the full-scale ion source. SPIDER will focus on source uniformity, negative ion current density and beam optics. In June 2018 the experimental operation of SPIDER has started

    Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA

    Get PDF
    Non-fluent/agrammatic primary progressive aphasia (nfvPPA) is caused by neuro-degeneration within the left fronto-insular speech and language production network (SPN). Graph theory is a branch of mathematics that studies network architecture (topology) by quantifying features based on its elements (nodes and connections). This approach has been recently applied to neuroimaging data to explore the complex architecture of the brain connectome, though few studies have exploited this technique in PPA. Here, we used graph theory on functional MRI resting state data from a group of 20 nfvPPA patients and 20 matched controls to investigate topological changes in response to focal neuro-degeneration. We hypothesized that changes in the network architecture would be specific to the affected SPN in nfvPPA, while preserved in the spared default mode network (DMN). Topological configuration was quantified by hub location and global network metrics. Our findings showed a less efficiently wired and less optimally clustered SPN, while no changes were detected in the DMN. The SPN in the nfvPPA group showed a loss of hubs in the left fronto-parietal-temporal area and new critical nodes in the anterior left inferior-frontal and right frontal regions. Behaviorally, speech production score and rule violation errors correlated with the strength of functional connectivity of the left (lost) and right (new) regions respectively. This study shows that focal neurodegeneration within the SPN in nfvPPA is associated with network-specific topological alterations, with the loss and gain of crucial hubs and decreased global efficiency that were better accounted for through functional rather than structural changes. These findings support the hypothesis of selective network vulnerability in nfvPPA and may offer biomarkers for future behavioral intervention

    Sustainable development goals and 2030 agenda: Awareness, knowledge and attitudes in nine Italian universities, 2019

    Get PDF
    Sustainable Development Goals (SDGs) and 2030 Agenda represent global development programs. Education can widen the acknowledgement of their relevance and their applications. This survey aims to assess awareness, knowledge and attitudes towards SDGs and sustainability among first-year students in nine Italian Universities. A Likert scale-based online questionnaire of 70 items was compiled by students from March to July 2019. It examined knowledge and expectations referred to sustainable development concepts, indicators and documents/models accounting for sociodemographic variables. Statistical analyses performed were Chi-square test, Fisher\u2019s Exact test, Kendall\u2019s W correlation coefficient, univariate and multivariate analysis. The questionnaire was completed by 1676 students. A low percentage referred a good knowledge of SDGs and 2030 Agenda, most of them had never attended related educational activities previously. Better knowledge of SDGs and 2030 Agenda was observed in case of previous specific educational activities (p < 0.001). The expectation towards university guaranteeing an education on SDGs was high, both for personal wisdom and for usefulness in future professional context. A significant difference (p < 0.001) in such expectations was found, as healthcare students were less interested than colleagues of other areas. The results showed low knowledge but interest towards sustainable development. A scheduled implementation of academic initiatives should be considered

    Bioactivity, biocompatibility and antimicrobial properties of a chitosan-mineral composite for periodontal tissue regeneration

    Get PDF
    A composite membrane of the polymer, chitosan, and the silver-exchanged mineral phase, tobermorite, was prepared by solvent casting and characterised by scanning electron microscopy and Fourier transform infrared spectroscopy. The in vitro bioactivity, cytocompatibility and antimicrobial activity of the composite were evaluated with respect to its potential application as a guided tissue regeneration (GTR) membrane. The in vitro bioactivity was verified by the formation of hydroxyapatite on the surface of the membrane in simulated body fluid and its cytocompatibility was established using MG63 human osteosarcoma cells. The presence of silver ions conferred significant antimicrobial activity against S. aureus, P. aeruginosa and E. coli. The findings of this investigation have indicated that the chitosansilver-tobermorite composite is a prospective candidate for GTR applications

    Social cognition and idiopathic isolated cervical dystonia

    Get PDF
    For a long time, cervical dystonia (CD) has been characterised only by disturbances in motor functioning. Despite accumulating evidence for symptomatology in various non-motor domains, to date no study has investigated social cognition in CD. The aim of this study was to compare performance of CD patients and healthy controls in neurocognitive and socio-cognitive domain. Twenty-five non-depressed patients with CD and 26 healthy controls underwent neuropsychological testing. This involved assessment of cognitive status (general intellect, verbal memory, and executive function), and socio-cognitive functions using a Theory of mind task and self-report on empathy and emotion regulation. In comparison to controls, CD patients displayed significantly decreased cognitive abilities, particularly in executive function and verbal memory tasks. Difficulties in inferring mental states on both cognitive and affective levels were also observed. The largest discrepancies were detected in understanding intentionality in others. Poorer performance in cognitive and socio-cognitive tasks was unrelated to severity of the disease. This is the first evidence of compromised socio-cognitive functions in CD patients, highlighting this domain as another facet of non-motor symptoms of this disease. Future studies should advance our understanding of the extent, nature, and time course of these deficits in other aspects of social cognition in this patient population
    corecore