368 research outputs found

    Equivalence-based Security for Querying Encrypted Databases: Theory and Application to Privacy Policy Audits

    Full text link
    Motivated by the problem of simultaneously preserving confidentiality and usability of data outsourced to third-party clouds, we present two different database encryption schemes that largely hide data but reveal enough information to support a wide-range of relational queries. We provide a security definition for database encryption that captures confidentiality based on a notion of equivalence of databases from the adversary's perspective. As a specific application, we adapt an existing algorithm for finding violations of privacy policies to run on logs encrypted under our schemes and observe low to moderate overheads.Comment: CCS 2015 paper technical report, in progres

    Labour Market and Social Policy in Italy: Challenges and Changes. Bertelsmann Policy Brief #2016/02

    Get PDF
    vEight years after the outbreak of the financial crisis, Italy has still to cope with and overcome a plethora of economic and social challenges. On top of this, it faces an unfavourable demographic structure and severe disparities between its northern and southern regions. Some promising reforms have recently been enacted, specifically targeting poverty and social exclusion. However, much more remains to be done on the way towards greater economic stability and widely shared prosperity

    Lapex: A Phoswich balloon experiment for hard X-ray astronomy

    Get PDF
    Satellite and balloon observations have shown that several classes of celestial objects are hard ( 15 keV) energy band with a sensitivity of approx 10 mCrab has been performed with the UCSD/MIT instrument (A4) on board the HEAO 1 satellite. About 70 X-ray sources were detected, including galactic and extragalactic objects. Hard X-ray emission has been detected in the Galaxy from X-ray pulsars. Extragalactic sources of hard X-ray emission include clusters of galaxies, QSOs, BL Lac objects, Seyfert galaxies. The essential characteristics of the Large Area Phoswich Experiment (LAPEX) for crowded sky field observations are described. It has: (1) a broad energy band of operation (20-300 keV); (2) a 3 sigma sensitivity of about 1 mCrab in 10,000 s of live observing time; and (3) imaging capabilities with an angular resolution of about 20'

    Efficient Large-scale Trace Checking Using MapReduce

    Full text link
    The problem of checking a logged event trace against a temporal logic specification arises in many practical cases. Unfortunately, known algorithms for an expressive logic like MTL (Metric Temporal Logic) do not scale with respect to two crucial dimensions: the length of the trace and the size of the time interval for which logged events must be buffered to check satisfaction of the specification. The former issue can be addressed by distributed and parallel trace checking algorithms that can take advantage of modern cloud computing and programming frameworks like MapReduce. Still, the latter issue remains open with current state-of-the-art approaches. In this paper we address this memory scalability issue by proposing a new semantics for MTL, called lazy semantics. This semantics can evaluate temporal formulae and boolean combinations of temporal-only formulae at any arbitrary time instant. We prove that lazy semantics is more expressive than standard point-based semantics and that it can be used as a basis for a correct parametric decomposition of any MTL formula into an equivalent one with smaller, bounded time intervals. We use lazy semantics to extend our previous distributed trace checking algorithm for MTL. We evaluate the proposed algorithm in terms of memory scalability and time/memory tradeoffs.Comment: 13 pages, 8 figure

    SpecCert: Specifying and Verifying Hardware-based Security Enforcement

    Get PDF
    Over time, hardware designs have constantly grown in complexity and modern platforms involve multiple interconnected hardware components. During the last decade, several vulnerability disclosures have proven that trust in hardware can be misplaced. In this article, we give a formal definition of Hardware-based Security Enforcement (HSE) mechanisms, a class of security enforcement mechanisms such that a software component relies on the underlying hardware platform to enforce a security policy. We then model a subset of a x86-based hardware platform specifications and we prove the soundness of a realistic HSE mechanism within this model using Coq, a proof assistant system

    Robust H-infinity filtering for 2-D systems with intermittent measurements

    Get PDF
    This paper is concerned with the problem of robust H∞ filtering for uncertain two-dimensional (2-D) systems with intermittent measurements. The parameter uncertainty is assumed to be of polytopic type, and the measurements transmission is assumed to be imperfect, which is modeled by a stochastic variable satisfying the Bernoulli random binary distribution. Our attention is focused on the design of an H∞ filter such that the filtering error system is stochastically stable and preserves a guaranteed H∞ performance. This problem is solved in the parameter-dependent framework, which is much less conservative than the quadratic approach. By introducing some slack matrix variables, the coupling between the positive definite matrices and the system matrices is eliminated, which greatly facilitates the filter design procedure. The corresponding results are established in terms of linear matrix inequalities, which can be easily tested by using standard numerical software. An example is provided to show the effectiveness of the proposed approac

    Almost sure H∞ sliding mode control for nonlinear stochastic systems with Markovian switching and time-delays

    Get PDF
    This paperinvestigatesthealmostsure H1 sliding mode control (SMC) problem for non linear stochastic systems with Markovian switching and time-delays. An integral sliding surface is first constructed for the addressed system. Then, by employing the topping time method combined with martingale in equalities, sufficient conditions are established to ensure the almost surely exponential stability and the H 1 performance of the system dynamics in the specified sliding surface. ASMC law is designed to guarantee the reach ability of the specified sliding surface almost surely. Furthermore, the obtained results are applied to a class of special nonlinear stochastic systems with Markovian switching and time-delays, where the desired SMC law is obtained in terms of the solutions to a set of matrix in equalities. Finally, a numerical example is given to show the effectiveness of the proposed SMC scheme

    LNCS

    Get PDF
    We solve the offline monitoring problem for timed propositional temporal logic (TPTL), interpreted over dense-time Boolean signals. The variant of TPTL we consider extends linear temporal logic (LTL) with clock variables and reset quantifiers, providing a mechanism to specify real-time constraints. We first describe a general monitoring algorithm based on an exhaustive computation of the set of satisfying clock assignments as a finite union of zones. We then propose a specialized monitoring algorithm for the one-variable case using a partition of the time domain based on the notion of region equivalence, whose complexity is linear in the length of the signal, thereby generalizing a known result regarding the monitoring of metric temporal logic (MTL). The region and zone representations of time constraints are known from timed automata verification and can also be used in the discrete-time case. Our prototype implementation appears to outperform previous discrete-time implementations of TPTL monitoring
    • 

    corecore