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Abstract

This paper is concerned with the problem of robust H1 �ltering for uncertain two-dimensional (2-D)

systems with intermittent measurements. The parameter uncertainty is assumed to be of polytopic type,

and the measurements transmission is assumed to be imperfect, which is modeled by a stochastic variable

satisfying the Bernoulli random binary distribution. Our attention is focused on the design of an H1 �lter

such that the �ltering error system is stochastically stable and preserves a guaranteed H1 performance.

This problem is solved in the parameter-dependent framework, which is much less conservative than the

quadratic approach. By introducing some slack matrix variables, the coupling between the positive de�nite

matrices and the system matrices is eliminated, which greatly facilitates the �lter design procedure. The

corresponding results are established in terms of linear matrix inequalities, which can be easily tested

by using standard numerical software. An example is provided to show the e¤ectiveness of the proposed

approach.
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1 Introduction

The state estimation of dynamic systems with both process and measurement noise inputs has attracted

considerable attention due to its application as well as theoretical importance in control and signal processing

�elds. In these applications, it is usually desirable to estimate the values of state variables from the system

measurement data. Various schemes, such as Kalman �ltering, H1 �ltering and mixed H2/H1 �ltering,

have been addressed in the literature. To mention a few, the �ltering problem bas been addressed for

uncertain systems [8, 13, 14, 16], for stochastic systems [22, 27], for time-delay systems [24, 25, 26], for

Markovian jumping systems [17, 20, 21] for sample-data systems [19], and for Linear Systems over Polynomial

Observations [1] and with multiple state and observation delays [2]. Among the above mentioned schemes,

H1 �ltering has been proved to be one of the most important strategies, the merit of which lies in that

no statistical assumption on the noise signals is needed. In addition, H1 �ltering has been supposed to be

more robust than traditional Kalman �ltering, when there exist model uncertainties in the system. Thus

the H1 �ltering is becoming more and more popular to handle the corresponding state estimation problem.

On the other hand, many practical systems can be modeled as two-dimensional (2-D) systems, such as

linear image processing, multi-dimensional digital �ltering and thermal processes. Therefore, over the past

decades considerable attention has been devoted to the analysis and synthesis problems for 2-D systems, and

many important results have been reported in the literature along the development of one-dimensional (1-D)

systems. To mention a few, the problem of H1 �ltering has been solved for 2-D systems with parameter

uncertainties [6, 7], for time delay systems [3], for 2-D stochastic systems [4, 10] and the mixed H2/H1
�ltering has also been addressed in [23]. Earlier results on the �ltering problem obtained for 1-D uncertain

systems were mostly based on the notion of quadratic stability, where a positive-de�nite matrix was required

for the entire uncertainty domain. The quadratic stability, however, has been generally regarded as being

conservative, and thus recently much e¤ort has been devoted to investigating the parameter-dependent

stability. The parameter dependent approach can make the positive-de�nite matrices relaxed to be di¤erent

for each vertex of the polytope. Similar ideas have been subsequently developed to investigate the problem

of H1 �ltering for 2-D systems. However, the improvement was achieved at the expense of setting the slack

matrix variable additionally introduced to be �xed for the entire uncertainty domain. By paying careful

attention to the structure of the slack matrix variable, we �nd the conservativeness could be further reduced.

Another feature worth mentioning is that, for the H1 �ltering problem of 2-D systems, all the reported

results are based on an implicit assumption that the communication between the physical plant and �lter is

perfect, that is, the signals transmitted from the plant will arrive at the �lter simultaneously and perfectly.

However, in many practical situations, there may be a nonzero probability that all the signals can be

measured during their transmission. In other words, the systems may have intermittent measurements,

which bring us new challenges. Moreover, networked systems are becoming more and more popular for the

reason that they have several advantages over traditional systems, such as low cost, reduced weight and

power requirements, simple installation and maintenance, and high reliability [5, 9, 15]. If network media

is introduced to �lter design, the data packet dropout phenomenon, which appears in a typical network

environment, will naturally induce intermittent measurements from the plant to the �lter. Therefore, the

problem of �lter design with intermittent measurements is of signi�cant importance and, to the best of the

authors�knowledge, this problem has not been fully investigated, which motivates the present study.

In this paper, motivated by the above two aspects, we investigate the problem of robust H1 �lter de-

sign for uncertain 2-D systems with intermittent measurements. The measurements transmitted between

the plant and the �lter are assumed to be imperfect. And the phenomenon of the measurements missing is
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assumed to satisfy the Bernoulli random binary distribution. Given a 2-D system containing polytopic para-

meter uncertainties, our purpose is to design an H1 �lter such that the �ltering error system is stochastically

stable and preserves a guaranteed H1 performance. This problem is solved in the parameter-dependent

framework, which is much less conservative than the quadratic approach. More speci�cally, we only impose

part of the slack matrix variable to be �xed for the entire uncertainty domain. The corresponding results

are obtained for the existence of desired �lters in the form of linear matrix inequalities (LMIs), which can

be solved by standard numerical software. Finally, an example is provided to illustrate the e¤ectiveness of

the proposed �lter design procedures.

The remainder of this paper is organized as follows. Section 2 formulates the problem under consideration.

The stability and H1 performance of the �ltering error system is given in Section 3. In Section 4, the �lter

design problem is solved. An example is given in Section 5 to illustrate the e¤ectiveness of the proposed

method. Finally, conclusions are drawn in Section 6.

Notation: The notation used in the paper is standard. The superscript �T�stands for matrix transposi-

tion; Rn denotes the n-dimensional Euclidean space, Rm�n is the set of all real matrices of dimension m�n,
and P > 0 (� 0) means that P is real symmetric and positive de�nite (semi-de�nite). The notation j�j refers
to the Euclidean vector norm and �min (�), �max (�) denote the minimum and the maximum eigenvalue of

the corresponding matrix, respectively. In symmetric block matrices or complex matrix expressions, we use

an asterisk (�) to represent a term that is induced by symmetry, and diagf: : :g stands for a block-diagonal
matrix. E fxg and E fxj yg will, respectively, mean the expectation of x and the expectation of x conditional
on y. Matrices, if their dimensions are not explicitly stated, are assumed to be compatible for algebraic

operations.

2 Problem Formulation

Consider the uncertain 2-D discrete systems described by the Fornasini-Marchesini (FM) model:

xi+1;j+1 = A1 (�)xi;j+1 +A2 (�)xi+1;j +B1 (�)!i;j+1 +B2 (�)!i+1;j ;

yi;j = C (�)xi;j +D (�)!i;j ;

zi;j = L (�)xi;j ; i; j = 0; 1; 2; : : : ; (1)

where xi;j 2 Rn is the state vector, yi;j 2 Rm is the measured output; zi;j 2 Rp is the signal to be estimated,
!i;j 2 Rq is the disturbance input which belongs to l2 f[0;1) ; [0;1)g. The system matrices A1 (�), A2 (�),

B1 (�), B2 (�), C (�), D (�) and L (�) are appropriately dimensioned with partially unknown parameters.

We assume that

R ,

264 A1 (�) A2 (�) B1 (�)

B2 (�) C (�) D (�)

L (�) 0 0

375 = sP
i=1
�i

264 A1i A2i B1i

B2i Ci Di

Li 0 0

375 ; � 2 �; (2)

where � is the unit simplex:

� ,
�
(�1; �2; � � � ; �s) :

sP
i=1
�i = 1; �i � 0

�
: (3)

Remark 1 The parameter uncertainties considered in this paper are assumed to be of polytopic type, en-
tering into all the matrices of the system model. The polytopic uncertainty has been widely used in the

problems of robust control and �ltering for uncertain systems (see, for instance, [11, 12] and the references
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therein), and many practical systems possess parameter uncertainties which can be either exactly modeled

or overbounded by the polytopic uncertainty R.

Throughout the paper, we make the following assumption on the boundary condition.

Assumption 1 The boundary condition is assumed to satisfy the following condition:

lim
N!1

E
�

NP
k=0

�
jxk;0j2 + jx0;kj2

��
<1:

The objective here is to design a �lter of the following form to estimate zi;j :

x̂i+1;j+1 = Af1x̂i;j+1 +Af2x̂i+1;j +Bf1~yi;j+1 +Bf2~yi+1;j ;

ẑi;j = Lf x̂i;j ; (4)

where, x̂i;j 2 Rn is the �lter state vector, ~yi;j 2 Rm is the input of the �lter; Af1, Af2, Bf1, Bf2, Lf are

appropriately dimensioned �lter matrices to be determined.

Remark 2 Most of the previous results for �lter designing are based on the implicit assumption that the
communication channel between the physical plant and �lter is perfect, that is, the signals transmitted from

the plant will arrive at the �lter completely and simultaneously. However, in many practical situations,

especially in a network environment, this assumption is not always guaranteed.

In this paper, we assume the data packet dropout (or data missing) is described by a stochastic variable,

that is,

~yi;j = �i;jyi;j ; (5)

where the stochastic variable f�i;jg is a Bernoulli distributed white sequence taking the values of 0 and 1
with

Prob f�i;j = 1g = E f�i;jg = �;
Prob f�i;j = 0g = 1� E f�i;jg = 1� �;

and � is a known positive scalar.

Remark 3 With (5), the input ~yi;j of the �lter is no longer equivalent to the output yi;j of the plant, which
characterizes the real situation in many applications. The system measurement model (5) can be used to

represent missing measurement or uncertain observations, which was �rst introduced in [18], and has been

subsequently utilized in both control and signal processing problems [26].

Based on the intermittent measurement, we have the �lter in the following form

x̂i+1;j+1 = Af1x̂i;j+1 +Af2x̂i+1;j +Bf1�i;j+1yi;j+1 +Bf2�i+1;jyi+1;j ;

ẑi;j = Lf x̂i;j : (6)

De�ne the augmented state vector ~xi;j =
h
xTi;j ; x̂

T
i;j

iT
and the �ltering error signal ~zi;j = zi;j � ẑi;j . Then we

have the �ltering error system

~xi+1;j+1 = �A1 (�) ~xi;j+1 + �A2 (�) ~xi+1;j + ��i;j+1 �A3 (�) ~xi;j+1 + ��i+1;j �A4 (�) ~xi+1;j

+ �B1 (�)!i;j+1 + �B2 (�)!i+1;j + ��i:j+1 �B3 (�)!i;j+1 + ��i+1;j �B4 (�)!i+1;j ;

~zi;j = �L (�) ~xi;j ; (7)
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where

�Al (�) =

"
Al (�) 0

�BflC (�) Afl

#
, �Bl (�) =

"
Bl (�)

�BflD (�)

#
, l = 1; 2;

�A3 (�) =

"
0 0

Bf1C (�) 0

#
, �B3 (�) =

"
0

Bf1D (�)

#
, �L (�) =

h
L(�) �Lf

i
,

�A4 (�) =

"
0 0

Bf2C (�) 0

#
, �B4 (�) =

"
0

Bf2D (�)

#
; ��i;j = �i;j � �:

It is clear that

E
�
��i;j
	
= 0; E

�
��i;j��i;j

	
= � (1� �) : (8)

The introduction of the stochastic variable �i;j renders the �ltering error system to be stochastic instead of

a deterministic one. Before proceeding further, we need to introduce the following de�nition of stochastic

stability for the �ltering error system in (7), which will be essential for our derivation.

De�nition 1 (stochastic stability) The �ltering error system in (7) with Assumption 1 and !i;j = 0 is

said to be mean-square asymptotically stable if for every initial condition E
�
j~x0;0j2

	
<1,

lim
i+j!1

E
�
j~xi;j j2

	
= 0:

In addition, we have the following de�nition.

De�nition 2 (H1 performance) Given a scalar 
 > 0, the �ltering error system in (7) is said to be mean-

square asymptotically stable with an H1 disturbance attenuation level 
 if it is mean-square asymptotically

stable and under zero initial and boundary conditions, jj~zjjE < 
jj!jj2 for all nonzero ! , f!i;jg 2 l2 [0;1),
where

jj~zjjE ,

vuutE( 1P
i=0

1P
j=0

j~zi;j j2
)
; jj!jj2 ,

s
1P
i=0

1P
j=0

j!i;j j2:

Then, the problem to be addressed in this paper is expressed as follows

Problem HFIM2DFM (H1 Filtering with Intermittent Measurements for 2DFM systems) Consider the
system in (1) with uncertainty and missing measurements described in (2) and (5) respectively. Given a real

number 
 > 0, design a �lter in the form of (6) such that the �ltering error system in (7) is mean-square

asymptotically stable with an H1 disturbance attenuation level 
: The corresponding �lter is called H1
�lter.

3 H1 Filtering Analysis

In this section, the �ltering analysis problem is concerned. More speci�cally, we assume that the �lter

matrices Af1, Af2, Bf1, Bf2, Lf in (6) are known, and we will study the condition under which the �ltering

error system in (7) is stochastically stable in the mean-square with a guaranteed H1 performance.
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Theorem 1 Consider the system in (1) and suppose the �lter matrices Af1, Af2, Bf1, Bf2, Lf in (6) are

given. Then the �ltering error system in (7) for any � 2 � is mean-square asymptotically stable with a given
H1 performance 
; if there exist matrices P (�) > 0 and Q(�) > 0 satisfying

	 , �T1 P (�)�1 + �2�T2 P (�)�2 + �T3 �3 + �T4 �4 + �5 < 0; (9)

where

�1 =
h
�A1(�) �A2(�) �B1(�) �B2(�)

i
;

�2 =
h
�A3(�) �A4(�) �B3(�) �B4(�)

i
;

�3 =
h
�L(�) 0 0 0

i
;

�4 =
h
0 �L(�) 0 0

i
;

�5 = diag
�
Q(�)� P (�);�Q(�);�
2I;�
2I

	
;

� =
p
�(1� �):

Proof. Consider the following index
J , X1 �X2; (10)

with

X1 , E
�
~xTi+1;j+1P (�)~xi+1;j+1

�� ~x	 ;
X2 , ~xT diag f(P (�)�Q(�)); Q(�)g ~x;

where ~x =
h
~xTi;j+1 ~xTi+1;j

iT
, and P (�), Q(�) are symmetric positive de�nite matrices to be determined.

We �rst prove the stochastic stability of the �ltering error system in (7) with zero disturbance input

!i;j = 0. Then, (7) becomes

~xi+1;j+1 = �A1 (�) ~xi;j+1 + �A2 (�) ~xi+1;j + ��i;j+1 �A3 (�) ~xi;j+1 + ��i+1;j �A4 (�) ~xi+1;j ;

~zi;j = �L (�) ~xi;j :

It is observed that condition (9) implies

�T1 P (�)�1 + �
2�T2 P (�)�2 + �5 < 0;

which further implies


 ,

266664
"

�AT1 (�)P (�)
�A1(�) +Q(�)

�P (�) + �2 �AT3 (�)P (�) �A3(�)

# "
�AT1 (�)P (�)

�A2(�)

+�2 �AT3 (�)P (�)
�A4(�)

#

�
"

�AT2 (�)P (�)
�A2(�)+

�2 �AT4 (�)P (�)
�A4(�)�Q(�)

#
377775 < 0:

Then along the solution of the �ltering error system in (7), we have

J = E
�
~xTi+1;j+1P (�)~xi+1;j+1

�� ~x	� ~xT diag f(P (�)�Q(�)); Q(�)g ~x
= E

( �
�A1(�)~xi;j+1 + �A2(�)~xi+1;j + ��i;j+1 �A3(�)~xi;j+1 + ��i+1;j �A4(�)~xi+1;j

�T
P (�)

�
�
�A1(�)~xi;j+1 + �A2(�)~xi+1;j + ��i;j+1 �A3(�)~xi;j+1 + ��i+1;j �A4(�)~xi+1;j

� !����� ~x
)

�~xT diag f(P (�)�Q(�)); Q(�)g ~x:
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From (8) and with � =
p
�(1� �), it follows that

J = ~xT
~x:

This means that for all ~x 6= 0 we have

X1 �X2
X2

= � ~xT (�
)~x
~xT diag f(P (�)�Q(�)); Q(�)g ~x

� � �min(�
)
�max (diag f(P (�)�Q(�)); Q(�)g)

= � � 1;

where � = 1� �min(�
)
�max(diagf(P (�)�Q(�));Q(�)g) and X1;X2 are de�ned in (10). Since

�min(�
)
�max(diagf(P (�)�Q(�));Q(�)g) > 0,

we have � < 1. Obviously,

� � X1
X2

> 0:

That is, � 2 (0; 1) and is independent of ~x: Thus, we obtain X1 � �X2; and taking expectation of both sides
yields

E
�
~xTi+1;j+1P (�)~xi+1;j+1

	
� �E

�
~xTi;j+1(P (�)�Q(�))~xi;j+1 + ~xTi+1;jQ(�)~xi+1;j

	
: (11)

For the convenience of notations, we denote

Xi;j , E
�
~xTi;jP (�)~xi;j

	
;

Yi;j , E
�
~xTi;jQ(�)~xi;j

	
: (12)

Then, (11) becomes

Xi+1;j+1 � �Xi;j+1 + �Yi+1;j � �Yi;j+1: (13)

From (9), negative de�nite matrices Q(�)� P (�) is obtained, that is P (�) > Q(�), which implies

Xi;j > Yi;j : (14)

Upon the relationship in (13) and (14), for i = k � 1; : : : ; 0;�1, j = �1; 0; : : : ; k � 1, it can be established
that

Xk;0 = Xk;0;
Xk�1;1 � �Xk�2;1 + �Yk�1;0 � �Yk�2;1

� �Xk�2;1 + �Xk�1;0 � �Yk�2;1;
Xk�2;2 � �Xk�3;2 + �Yk�2;1 � �Yk�3;2;

...

X1;k�1 � �X0;k�1 + �Y1;k�2 � �Y0;k�1
� �X0;k�1 + �Y1;k�2;

X0;k = X0;k:

Adding both sides of the above inequalities yields

kP
l=0

Xk�l;l � �
k�1P
l=0

Xk�1�l;l + Xk;0 + X0;k:
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Using this relationship iteratively, we can obtain

kP
l=0

Xk�l;l � �kX0;0 +
k�1P
l=0

�l (Xk�l;0 + X0;k�l)

�
kP
l=0

�l (Xk�l;0 + X0;k�l) :

Therefore, we have

E
�

kP
l=0

j~xk�l;lj2
�
� K

kP
l=0

�lE
n
j~xk�l;0j2 + j~x0;k�lj2

o
; (15)

where

K , �max (P (�))

�min(P (�))
:

Now, denote

�k = E
�

kP
l=0

j~xk�l;lj2
�
;

�k�l;0 = E
n
j~xk�l;0j2 + j~x0;k�lj2

o
:

Therefore, the inequality in (15) becomes

�k � K
kP
l=0

�l�k�l;0:

Then for K = 0; 1; : : : ; N , we have

�0 � K�0;0;
�1 � K

�
��0;0 + �1;0

�
;

�2 � K
�
�2�0;0 + ��1;0 + �2;0

�
;

...

�N � K
�
�N�0;0 + �

N�1�1;0 + � � �+ �N;0
�
:

Summing up both sides of the above inequalities we have

NP
k=0

�k � K
�
1 + � + � � �+ �N

�
�0;0

+K
�
1 + � + � � �+ �N�1

�
�1;0 + � � �+ ��N;0

� K
�
1 + � + � � �+ �N

�
�0;0 +K

�
1 + � + � � �+ �N

�
�1;0

+K
�
1 + � + � � �+ �N

�
�N;0

= K1� �
N+1

1� �
NP
k=0

�k;0:

Then, under Assumption 1, for every initial condition �0 <1 , the right side of this inequality is bounded,

which means limk!1 �k = 0, that is, E
n
j~xi;j j2

o
! 0 as i+ j !1. According to De�nition 1, the �ltering

error system in (7) with !i;j = 0 is stochastically stable in the mean square.

Now, the H1 performance for the �ltering error system in (7) will be established. To this end, assume

zero initial and boundary conditions, that is, ~xi;j = 0 for i = 0 or j = 0. An index is introduced as

I , ~zT ~z � 
2~!T ~! + J ;
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where ~z ,
h
~zTi;j+1 ~zTi+1;j

iT
, ~! ,

h
!Ti;j+1 !Ti+1;j

iT
and J is de�ned in (10). Then along the solution of

the �ltering error system in (7), we have

I = ~xTi;j+1
�LT (�)�L(�)~xi;j+1 + ~x

T
i+1;j

�LT (�)�L(�)~xi+1;j � 
2!Ti;j+1!i;j+1 � 
2!Ti+1;j!i+1;j + J
= �T	�;

where � ,
h
~xTi;j+1 ~xTi+1;j !Ti;j+1 !Ti+1;j

iT
and 	 is de�ned in (9). Then for any � 6= 0, we have I < 0,

that is,

E
�
~xTi+1;j+1P (�)~xi+1;j+1

�� ~x	 < ~xT diag f(P (�)�Q(�)); Q(�)g ~x� ~zT ~z + 
2~!T ~!:
Taking expectation of both sides yields

E
�
~xTi+1;j+1P (�)~xi+1;j+1

	
� E

�
~xTi;j+1(P (�)�Q(�))~xi;j+1 + ~xTi+1;jQ(�)~xi+1;j

�~zTi;j+1~zi;j+1 � ~zTi+1;j~zi+1;j
	
+ 
2!Ti;j+1!i;j+1 + 


2!Ti+1;j!i+1;j : (16)

From the relationship in (16) and the notations in (12), for i = k � 1; : : : ; 0;�1, j = �1; 0; : : : ; k � 1, it can
be established that

Xk;0 = Xk;0;
Xk�1;1 < Xk�2;1 + Yk�1;0 � Yk�2;1 � E

�
~zTk�2;1~zk�2;1 + ~z

T
k�1;0~zk�1;0

	
+
2!Tk�2;1!k�2;1 + 


2!Tk�1;0!k�1;0;

Xk�2;2 < Xk�3;2 + Yk�2;1 � Yk�3;2 � E
�
~zTk�3;2~zk�3;2 + ~z

T
k�2;1~zk�2;1

	
+
2!Tk�3;2!k�3;2 + 


2!Tk�2;1!k�2;1;

...

X1;k�1 < X0;k�1 + Y1;k�2 � Y0;k�1 � E
�
~zT0;k�1~z0;k�1 + ~z

T
1;k�2~z1;k�2

	
+
2!T0;k�1!0;k�1 + 


2!T1;k�2!1;k�2;

X0;k = X0;k:

Adding both sides of the above inequalities and considering the zero initial and boundary conditions, we

have
kP
l=0

Xk�l;l <
k�1P
l=0

Xk�1�l;l � 2E
�
k�1P
l=0

~zTk�1�l;l~zk�1�l;l

�
+ 2
2

k�1P
l=0

!Tk�1�l;l!k�1�l;l:

Summing up both sides of this inequality from k = 0 to k = N , we have

E
�

NP
k=0

k�1P
l=0

~zTk�1�l;l~zk�1�l;l

�
< 
2

NP
k=0

k�1P
l=0

!Tk�1�l;l!k�1�l;l �
1

2

NP
l=0

XN�l;l:

Therefore, we have

E
� 1P
k=0

k�1P
l=0

~zTk�1�l;l~zk�1�l;l

�
< 
2

1P
k=0

k�1P
l=0

!Tk�1�l;l!k�1�l;l;

that is, jj~zjjE < 
jj!jj2 for all nonzero !i;j , and the proof is completed. �
When the communication links existing between the plant and the �lter is perfect, that is, there is no

data dropout during their transmission, the condition in Theorem 1 reduces to the following corollary.
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Corollary 1 Consider the system in (1) and suppose the �lter matrices Af1, Af2, Bf1, Bf2, Lf in (6) are

given. When � = 1; the �ltering error system in (7) for any � 2 � is asymptotically stable with a given H1
performance 
; if there exist matrices P (�) > 0 and Q(�) > 0 satisfying

�T1 P (�)�1 + �
T
3 �3 + �

T
4 �4 + �5 < 0;

where �1, �3, �4 and �5 are given in (9).

4 H1 Filter Design

Theorem 1 addresses the H1 �ltering problem for the system in (7) where the �lter matrixes Af1, Af2, Bf1,

Bf2, Lf are all known. However, our eventual purpose is to determine the �lter matrices. In this section,

we will give a parameter-dependent approach to solve the robust �lter design problem for the uncertain

systems. To reduce the design conservatism, in what follows, �rstly we give the following proposition, which

eliminates the products between the positive-de�nite matrix P (�) and system matrices.

Proposition 1 Consider the system in (1) and suppose the �lter matrices Af1, Af2, Bf1, Bf2, Lf in (6)

are given. Then the �ltering error system in (7) for any � 2 � is asymptotically stable with a given H1
performance 
; if there exist matrices P (�) > 0, Q(�) > 0 and J(�) satisfying2666666666666664

�I 0 0 0 �L(�) 0 0 0

� �I 0 0 0 �L(�) 0 0

� � � 0 JT (�) �A1(�) JT (�) �A2(�) JT (�) �B1(�) JT (�) �B2(�)

� � � � �JT (�) �A3(�) �JT (�) �A4(�) �JT (�) �B3(�) �JT (�) �B4(�)

� � � � Q(�)� P (�) 0 0 0

� � � � � �Q(�) 0 0

� � � � � � �
2I 0

� � � � � � � �
2I

3777777777777775
< 0; (17)

where � = P (�)� JT (�)� J(�).

Proof. If we can prove (17) is equivalent to (9), the proposition can be easily established. By virtue of the
Schur complement, (9) is equivalent to2666666666666664

�I 0 0 0 �L(�) 0 0 0

� �I 0 0 0 �L(�) 0 0

� � �P (�) 0 P (�) �A1(�) P (�) �A2(�) P (�) �B1(�) P (�) �B2(�)

� � � �P (�) �P (�) �A3(�) �P (�) �A4(�) �P (�) �B3(�) �P (�) �B4(�)

� � � � Q(�)� P (�) 0 0 0

� � � � � �Q(�) 0 0

� � � � � � �
2I 0

� � � � � � � �
2I

3777777777777775
< 0: (18)

On the one hand, suppose there exist matrices P (�) > 0, Q(�) > 0 and J(�) satisfying (17). From the

negative de�nite matrix (17), we know the fact that J + JT � P (�) > 0 and P (�) > 0, so that J�1(�)
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exists. In addition, by noticing
�
P (�)� JT (�)

�
P�1(�) (P (�)� J(�)) � 0, we have �JT (�)P�1(�)J(�) �

P (�)� JT (�)� J(�), which together with (17) yields2666666666666664

�I 0 0 0 �L(�) 0 0 0

� �I 0 0 0 �L(�) 0 0

� � ��� 0 JT (�) �A1(�) JT (�) �A2(�) JT (�) �B1(�) JT (�) �B2(�)

� � � ��� �JT (�) �A3(�) �JT (�) �A4(�) �JT (�) �B3(�) �JT (�) �B4(�)

� � � � Q(�)� P (�) 0 0 0

� � � � � �Q(�) 0 0

� � � � � � �
2I 0

� � � � � � � �
2I

3777777777777775
< 0; (19)

where �� = JT (�)P�1(�)J(�). Performing a congruence transformations to (19) by

diag
�
I, I, J�1(�)P (�) , J�1(�)P (�), I, I, I, I

	
, we obtain (18). On the other hand, if (18) holds, by

selecting J(�) = JT (�) = P (�), the negative de�nite matrix (17) is established. The proof is completed. �

Remark 4 The introduction of slack variable J(�) enables us to realize the parameter dependence, that is
to use a di¤erent positive de�nite matrix Pi for each vertex of the polytope. Moreover, J(�) is also allowed

to be �-dependent, that is, there is no need setting the introduced slack matrix J(�) to be constant for the

entire uncertainty domain. As J(�) is a general matrix, that is, no structural restriction is imposed, which

is potential to yield to less conservative results for the robust �lter design.

Based on the above idea, in what follows, we present a new �ltering result. It is observed that we only

need to set part of J(�) to be constant for the entire uncertainty domain. More speci�cally, for the uncertain

case, we structure J(�) as the following structure

J(�) =

"
J1(�) J2(�)

J4 J3

#
: (20)

The (3; 3) block of (17) implies P (�) � J(�) � JT (�) < 0 and P (�) > 0, therefore, J(�) is nonsingular.

With J(�) is given in (20), there is no loss of generality in assuming that J4 and J3 are invertible. Let

matrices P (�), Q(�) be partitioned as:

P (�) =

"
P1(�) P2(�)

� P3(�)

#
, Q(�) =

"
Q1(�) Q2(�)

� Q3(�)

#
;

and introduce matrix

T ,
"
I 0

0 J�13 J4

#
; (21)

and de�ne

�P (�) =

"
�P1(�) �P2(�)

� �P3(�)

#
, T TP (�)T;

�Q(�) =

"
�Q1(�) �Q2(�)

� �Q3(�)

#
, T TQ(�)T:

11



Performing congruence transformations to (17) by diag fI; I; T; T; T; T; I; Ig and taking into account (7),
we obtain 2666666666664

�I 0 0 0 ~L(�) 0 0

� �I 0 0 0 ~L(�) 0

� � �1 0 �2 �3 �4

� � � �1 ��5 ��6 ��7

� � � � �Q(�)� �P (�) 0 0

� � � � � � �Q(�) 0

� � � � � � �
2I

3777777777775
< 0; (22)

where

�1 =

"
�P1(�)� JT1 (�)� J1(�) �P2(�)� J2(�)J�13 J4 � JT4 J�13 J4

� �P3(�)� JT4 J�T3 J4 � JT4 J�13 J4

#
;

�2 =

"
JT1 (�)A1(�) + �J

T
4 Bf1C(�) JT4 Af1J

�1
3 J4

JT4 J
�T
3 JT2 (�)A1(�) + �J

T
4 Bf1C(�) JT4 Af1J

�1
3 J4

#
; ~L(�) =

h
L(�) �LfJ�13 J4

i
;

�3 =

"
JT1 (�)A2(�) + �J

T
4 Bf2C(�) JT4 Af2J

�1
3 J4

JT4 J
�T
3 JT2 (�)A2(�) + �J

T
4 Bf2

�C(�) JT4 Af2J
�1
3 J4

#
;

�4 =

"
JT1 (�)B1(�) + �J

T
4 Bf1D(�) JT1 (�)B2(�) + �J

T
4 Bf2D(�)

JT4 J
�T
3 JT2 (�)B1(�) + �J

T
4 Bf1D(�) JT4 J

�T
3 JT2 (�)B2(�) + �J

T
4 Bf2D(�)

#
;

�5 =

"
JT4 Bf1C(�) 0

JT4 Bf1C(�) 0

#
; �6 =

"
JT4 Bf2C(�) 0

JT4 Bf2C(�) 0

#
; �7 =

"
JT4 Bf1D(�) JT4 Bf2D(�)

JT4 Bf1D(�) JT4 Bf2D(�)

#
:

De�ne F (�) , J1(�), V (�) , J2(�)J�13 J4, W , JT4 J�13 J4 and264 �Af1 �Bf2
�Af2 �Bf2
�Lf 0

375 ,
264 J

T
4 0 0

0 JT4 0

0 0 I

375
264 Af1 Bf1

Af2 Bf2

Lf 0

375" J�13 J4 0

0 I

#
;

substituting the above matrices into (22) we obtain

�(�) ,

2666666666664

�I 0 0 0 L̂(�) 0 0

� �I 0 0 0 L̂(�) 0

� � �1 0 �2 �3 �4

� � � �1 ��5 ��6 ��7

� � � � �Q(�)� �P (�) 0 0

� � � � � � �Q(�) 0

� � � � � � �
2I

3777777777775
< 0; (23)
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where

�1 = �P (�)�
"
F (�) + F T (�) V (�) +W

� W T +W

#
;

�2 =

"
F T (�)A1(�) + � �Bf1C(�) �Af1

V T (�)A1(�) + � �Bf1C(�) �Af1

#
; L̂(�) =

h
L(�) ��Lf

i
;

�3 =

"
F T (�)A2(�) + � �Bf2C(�) �Af2

V T (�)A2(�) + � �Bf2C(�) �Af2

#
;

�4 =

"
F T (�)B1(�) + � �Bf1D(�) F T (�)B2(�) + � �Bf2D(�)

V T (�)B1(�) + � �Bf1D(�) V T (�)B2(�) + � �Bf2D(�)

#
;

�5 =

"
�Bf1C(�) 0
�Bf1C(�) 0

#
;�6 =

"
�Bf2C(�) 0
�Bf2C(�) 0

#
;�7 =

"
�Bf1D(�) �Bf2D(�)
�Bf1D(�) �Bf2D(�)

#
:

Based on this, we obtain the following theorem.

Theorem 2 Consider the 2DFM system in (1). For a given positive constant 
, an admissible robust H1 �l-

ter in the form of (4) exists if there exist matrices �P (�) =

"
�P1(�) �P2(�)

� �P3(�)

#
> 0, �Q(�) =

"
�Q1(�) �Q2(�)

� �Q3(�)

#
>

0, F (�), V (�), W and matrices �Af1, �Af2, �Bf1, �Bf2, �Lf satisfying (23). Moreover, under the above condi-

tions, the matrices for the �lter in (4) are given by264 Af1 Bf1

Af2 Bf2

Lf 0

375 =
264 W

�1 0 0

0 W�1 0

0 0 I

375
264 �Af1 �Bf2
�Af2 �Bf2
�Lf 0

375 : (24)

Proof. Suppose there exist matrices �P (�), �Q(�), F (�), V (�), W , �Af1, �Af2, �Bf1, �Bf2, and �Lf satisfying
(23). Noting the (4; 4) block in the negative de�nite matrix (23) together with �P3 (�) > 0, which impliesW is

nonsingular. Thus, we can always �nd square and nonsingular matrices J3 and J4 satisfying W = JT4 J
�1
3 J4.

Now, let T as in (21) and matrices

P (�) , T�T �P (�)T�1; Q (�) , T�T �Q (�)T�1; J(�) ,
"
F (�) V (�)J�14 J3

J4 J3

#
;

264 Af1 Bf1

Af2 Bf2

Lf 0

375 ,
264 J

�T
4 0 0

0 J�T4 0

0 0 I

375
264 �Af1 �Bf2
�Af2 �Bf2
�Lf 0

375" J�14 J3 0

0 I

#
: (25)

Now, by some algebraic matrix manipulations and taking into account the above de�nition, (22) is equivalent

to2666666666666664

�I 0 0 0 �L(�)T 0 0 0

� �I 0 0 0 �L(�)T 0 0

� � T T�T 0 V T (�) �A1(�)T V T (�) �A2(�)T V T (�) �B1(�) V T (�) �B2(�)

� � � T T�T �V T (�) �A3(�)T �V T (�) �A4(�)T �V T (�) �B3(�) �V T (�) �B4(�)

� � � � T T (Q(�)� P (�))T 0 0 0

� � � � � �T TQ(�)T 0 0

� � � � � � �
2I 0

� � � � � � � �
2I

3777777777777775
< 0;

(26)
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where � = P (�) � JT (�) � J(�), V (�) = J(�)T .Performing congruence transformations to (26) by diag
fI; I; T�1; T�1; T�1, T�1; I; Ig yields (17).
From the above proof, we know that if condition (23) has a set of feasible solutions, then the �lter

with a state-space realization Af1, Af2, Bf1, Bf2, Lf guarantees the �ltering error system in (7) to be

stochastically stable and with a prescribed H1 performance. Let us denote the transfer function from ~yi;j

to ẑi;j by Tẑ~y (z1; z2) = Lf (z1z2I � z1Af1 � z2Af2)�1 (z1Bf1 + z2Bf2). Substituting the �lter matrices with
(25) and considering the relationship W = JT4 J

�1
3 J4, we have

Tẑ~y (z1; z2) = �LfJ
�1
4 J3

�
z1z2I � z1J�T4 �Af1J

�1
4 J3 � z2J�T4 �Af2J

�1
4 J3

��1 �
z1J

�T
4

�Bf1 + z2J
�T
4

�Bf2

�
= �Lf

�
z1z2I � z1W�1 �Af1 � z2W�1 �Af2

��1 �
z1W

�1 �Bf1 + z2W
�1 �Bf2

�
:

which means (24) is established and the proof is completed. �

Remark 5 Theorem 2 tells us that not only the positive de�nite matrices P (�) and Q(�) are allowed to be

dependent on the uncertain parameter �, but the general slack matrices F (�) and V (�) are also allowed to

be �-dependent. This is di¤erent from the existing results in this �eld, which require the slack matrices to be

�xed for the entire uncertainty domain. It is worth noting that, as they are dependent on the parameter �,

the condition in (23) cannot be directly employed for �lter design. One way to facilitate Theorem 2 for the

construction of a �lter is to convert (23) into a �nite set of LMI constraints. The following theorem gives

a possible way to achieve this.

Theorem 3 Consider the 2DFM system in (1). For a given positive constant 
, an admissible robust H1

�lter in the form of (4) exists, if there exist matrices �Pi =

"
�P1i �P2i

� �P3i

#
> 0, �Qi =

"
�Q1i �Q2i

� �Q3i

#
> 0, Fi,

Vi, W and matrices �Af1, �Af2, �Bf1, �Bf2, �Lf satisfying

�ij +�ji < 0; 1 � i � j � s; (27)

where

�ij ,

2666666666664

�I 0 0 0 ~Li 0 0

� �I 0 0 0 ~Li 0

� � 	1 0 	2 	3 	4

� � � 	1 �	5 �	6 �	7

� � � � �Qi � �Pi 0 0

� � � � � � �Qi 0

� � � � � � �
2I

3777777777775
< 0; (28)

	1 = �Pi �
"
Fi + F

T
i Vi +W

� W T +W

#
; �Li =

h
Li ��Lfi

i
;

	2 =

"
F Ti A1j + �

�Bf1Cj �Af1

V Ti A1j + �
�Bf1Cj �Af1

#
; 	3 =

"
F Ti A2j + �

�Bf2Cj �Af2

V Ti A2j + �
�Bf2Cj �Af2

#
;

	4 =

"
F Ti B1j + �

�Bf1Dj F Ti B2j + �
�Bf2Dj

V Ti B1j + �
�Bf1Dj V Ti B2j + �

�Bf2Dj

#
;

	5 =

"
�Bf1Cj 0
�Bf1Cj 0

#
; 	6 =

"
�Bf2Cj 0
�Bf2Cj 0

#
; 	7 =

"
�Bf1Dj �Bf2Dj
�Bf1Dj �Bf2Dj

#
;

moreover, if the above condition is satis�ed, the matrices for the �lter in (4) are given by (24).
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Proof. Suppose there exist matrices �P (�) > 0, �Q(�) > 0, F (�), V (�), W , �Af1, �Af2, �Bf1, �Bf2 and Lf
satisfying (23), then the �lter in the form of (4) exist. Now, we use these matrices and � in the unit simplex

� to assume the following form:

�P (�) =

sX
i=1

�i �Pi; �Q(�) =

sX
i=1

�i �Qi;

V (�) =

sX
i=1

�iVi; F (�) =

sX
i=1

�iFi: (29)

By virtue of (29), it is easy to rewrite �(�) in (23) as

�(�) =
sP
j=1

sP
i=1
�i�i�ij =

sP
i=1
�2i�ii +

sP
i=1

sP
j=i+1

�i�j (�ij +�ji) ; (30)

where �ij takes the form of (28). On the other hand, from (27) we have

�ii < 0; i = 1; � � � ; s; (31)

�ij +�ji < 0; 1 � i < j � s: (32)

Considering
Ps
i=1 �i = 1, �i � 0, then from (30)-(32) we have �(�) < 0. Based on Theorem 2, there exists

a �lter in the form of (4) such that the �ltering error system in (7) is stochastically stable with a given H1
performance. �

5 An Illustrative Example

In this section, we use an example to illustrate the e¤ectiveness of the theoretical results developed above.

Example: Consider the model of the static �eld [6], which is described by di¤erential equation:

�i+1;j+1 = �1�i;j+1 + �1�i+1;j � �1�2�i;j + !1(i;j);

where �i;j is the state of the �eld at spacial coordinates (i; j), and �1, �2 are, respectively, the vertical and

horizontal correlative coe¢ cients of the random �eld, satisfying

�21 < 1; �22 < 1:

De�ning the augmented state vector xi;j =
h
�Ti;j+1 � �2�Ti;j �Ti;j

iT
, and assume that the measured equa-

tion and the signal to be estimated are

yi;j = �1�i;j+1 + (1� �1�2)�i;j + !2(i;j);
zi;j = �i;j :

It is easy to transform the above equation into a 2-DFM model in the form of (1), with the corresponding

system matrices given by

A1 (�) =

"
�1 0

0 0

#
; A2 (�) =

"
0 0

1 �2

#
; B1 (�) =

"
1 0

0 0

#
;

B2 (�) =

"
0 0

0 0

#
; C (�) =

h
�1 1

i
; D (�) =

h
0 1

i
; L (�) =

h
0 1

i
:
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It is assumed that measurements transmitted between the plant and the �lter are imperfect, that is, the

data may be lost during their transmission. Based on the above assumption, our purpose is to design a �lter

in the form of (4) such that the resulting �ltering error system in (7) is mean-square asymptotically stable

with a guaranteed H1 noise attenuation performance.

First, assume the uncertain parameters �1 and �2 are given by 0:15 � �1 � 0:45, 0:35 � �2 � 0:85. Thus
the above parameter uncertainty can be represented by a four-vertex polytope. The stochastic variable is

assumed to be �i;j = 1 (� = 1), which means that the measurements always reach the input of the �lter

successfully. Using the method proposed in (27), the minimum H1 performance 
� = 2:4989 is obtained

and the associated �lter matrices are given by

Af1 =

"
0:4445 �0:1658
0:0096 �0:0062

#
; Af2 =

"
�0:0847 0:0109

0:2526 0:2379

#
;

Bf1 =

"
�0:1696
�0:0131

#
; Bf2 =

"
0:0340

�0:5975

#
; Lf =

h
�0:0036 �1:0010

i
:

Now, assume the data may be lost during their transmission. Suppose � = 0:8; that is, in the commu-

nication link, the probability of the data packet missing is 0:2. With the above assumption, we apply the

�lter design method in Theorem 3, and the achieved H1 disturbance attenuation level is 
� = 3:7487 with

the corresponding �lter matrices

Af1 =

"
0:4950 �0:0795
�0:2211 0:0325

#
; Af2 =

"
0:0366 �0:0241
0:3558 0:4773

#
;

Bf1 =

"
�0:0835
0:0234

#
; Bf2 =

"
�0:0876
�0:5332

#
; Lf =

h
�0:6449 �0:9351

i
:

In the following, suppose � = 0:8, we shall show the e¤ectiveness of the designed H1 �lter by presenting

simulation results. The data packet dropouts is shown in Figure 1, which is generated randomly according

to � = 0:8. To show the asymptotic stability of the �ltering error system, we assume !i;j = 0 and let the

initial boundary conditions generated randomly. The obtained �ltering error signal ~zi;j is shown in Figure

2, from which we can see the estimation error response converges to zero under the preceding conditions.

To illustrate the performance of the designed �lter, we assume the zero boundary conditions, and let the

external disturbance !i;j be

!i;j =

8<:
h
0:1 0:1

iT
0

3 � i; j � 19
otherwise

:

Figure 3 shows the response of the �ltering error signal ~zi;j . By calculation, we have jj~zjj2 = 1:5729, jj!jj2 =
1:700, which yields 
� = 0:9252, which are below the corresponding prescribed value 3:7487, showing the

e¤ectiveness of the �lter design method.

Finally, Table 1 shows the minimum guaranteed performances 
� in terms of the feasibility of (27) for

di¤erent of �, from which we can see that the smaller the value of �, the larger the value of 
�. This

is reasonable, as � smaller implies higher chance of measurements missing, and thus worse disturbance

attenuation performance 
�.

� 1 0:95 0:9 0:85 0:8 0:75


� 2:4989 2:5844 2:9804 3:3882 3:7487 4:0809

Table 1. 
� for di¤erent values of �:
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6 Conclusions

In this paper, the problem of robust H1 �lter design for uncertain 2-D systems with parameter uncertain-

ties and missing measurements has been investigated. A stochastic variable satisfying the Bernoulli random

binary distribution is utilized to characterize the data missing phenomenon. A parameter-dependent tech-

nique has been used to design an H1 �lter such that the �ltering error system is stochastically stable and

preserves a guaranteed H1 performance, which is much less conservative than the quadratic approach. Some

slack matrices have been introduced to facilitate the H1 �lter design, and only part of the slack matrix

variable has been imposed to be �xed for the entire uncertainty domain. The corresponding results are in

the form of linear matrix inequalities, which can be solved by standard numerical software. An example has

shown the e¤ectiveness of the �lter design approaches presented in this paper.
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Figure 1. Data packet dropout
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Figure 2. Filter error with !i;j = 0
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20


	Response_CSSP-NTORF-007.pdf
	CSSP-NTORF-007.pdf



