706 research outputs found
Libration driven elliptical instability
The elliptical instability is a generic instability which takes place in any
rotating flow whose streamlines are elliptically deformed. Up to now, it has
been widely studied in the case of a constant, non-zero differential rotation
between the fluid and the elliptical distortion with applications in
turbulence, aeronautics, planetology and astrophysics. In this letter, we
extend previous analytical studies and report the first numerical and
experimental evidence that elliptical instability can also be driven by
libration, i.e. periodic oscillations of the differential rotation between the
fluid and the elliptical distortion, with a zero mean value. Our results
suggest that intermittent, space-filling turbulence due to this instability can
exist in the liquid cores and sub-surface oceans of so-called synchronized
planets and moons
Elliptical instability in hot Jupiter systems
Several studies have already considered the influence of tides on the
evolution of systems composed of a star and a close-in companion to tentatively
explain different observations such as the spin-up of some stars with hot
Jupiters, the radius anomaly of short orbital period planets and the
synchronization or quasi-synchronization of the stellar spin in some extreme
cases. However, the nature of the mechanism responsible for the tidal
dissipation in such systems remains uncertain. In this paper, we claim that the
so-called elliptical instability may play a major role in these systems,
explaining some systematic features present in the observations. This
hydrodynamic instability, arising in rotating flows with elliptical
streamlines, is suspected to be present in both planet and star of such
systems, which are elliptically deformed by tides. The presence and the
influence of the elliptical instability in gaseous bodies, such as stars or hot
Jupiters, are most of the time neglected. In this paper, using numerical
simulations and theoretical arguments, we consider several features associated
to the elliptical instability in hot-Jupiter systems. In particular, the use of
ad hoc boundary conditions makes it possible to estimate the amplitude of the
elliptical instability in gaseous bodies. We also consider the influence of
compressibility on the elliptical instability, and compare the results to the
incompressible case. We demonstrate the ability for the elliptical instability
to grow in the presence of differential rotation, with a possible synchronized
latitude, provided that the tidal deformation and/or the rotation rate of the
fluid are large enough. Moreover, the amplitude of the instability for a
centrally-condensed mass of fluid is of the same order of magnitude as for an
incompressible fluid for a given distance to the threshold of the instability.
Finally, we show that the assumption of the elliptical instability being the
main tidal dissipation process in eccentric inflated hot Jupiters and
misaligned stars is consistent with current data.Comment: Icarus (2013) http://dx.doi.org/10.1016/j.icarus.2012.12.01
Inertial wave turbulence driven by elliptical instability
The combination of elliptical deformation of streamlines and vorticity can lead to the destabilisation of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of non-linearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this paper, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealised triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealised local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterised for the first time. This regime is expected in planetary interiors
Moisissures de quelques fourrages du Sénégal. Considérations écologiques et toxicologiques
L'examen mycologique de fourrages du Sénégal, récoltés en saison des pluies ou en saison sèche, révèle dans l'un et l'autre cas une pollution fongique importante; les espèces dominantes sont pour la mycoflore champêtre, le Fusarium rigidiusculum et, parmi les espèces de stockage, l'Aspergillus flavus, l'A. niger et l'A. nidulans. La production éventuelle de mycotoxines par les espèces réputées toxinogènes est discutée. Les auteurs suggèrent, dans un premier temps, la surveillance de l'aflatoxinogénèse et le contrôle des trichothécènes dans ces fourrage
A systematic numerical study of the tidal instability in a rotating triaxial ellipsoid
The full non-linear evolution of the tidal instability is studied numerically
in an ellipsoidal fluid domain relevant for planetary cores applications. Our
numerical model, based on a finite element method, is first validated by
reproducing some known analytical results. This model is then used to address
open questions that were up to now inaccessible using theoretical and
experimental approaches. Growth rates and mode selection of the instability are
systematically studied as a function of the aspect ratio of the ellipsoid and
as a function of the inclination of the rotation axis compared to the
deformation plane. We also quantify the saturation amplitude of the flow driven
by the instability and calculate the viscous dissipation that it causes. This
tidal dissipation can be of major importance for some geophysical situations
and we thus derive general scaling laws which are applied to typical planetary
cores
Experimental study of libration-driven zonal flows in non-axisymmetric containers
International audienceOrbital dynamics that lead to longitudinal libration of celestial bodies also result in an elliptically deformed equatorial core-mantle boundary. The non-axisymmetry of the boundary leads to a topographic coupling between the assumed rigidmantle and the underlying low viscosity fluid.The present experimental study investigates theeffect of non axisymmetric boundaries on the zonal flow driven by longitudinal libration. For large enough equatorial ellipticity, we report intermittent space-filling turbulence in particular bands of resonant frequency correlated with larger amplitude zonal flow. The mechanism underlying the intermittent turbulence has yet to be unambiguously determined. Nevertheless, recent numerical simulations in triaxial and biaxial ellipsoids suggest that it may be associated with the growth and collapse of an elliptical instability (Cebron et al., 2012). Outside of the band of resonance, we find that the background flow is laminar and the zonal flow becomes independent of the geometry at first order, in agreement with a non linear mechanism in the Ekman boundary layer (e.g. Calkins et al.; 2010, Sauret and Le Dizes, 2012b)
Recherches sur la motricité du rumen chez les petits Ruminants V. — Oscillations de l'amplitude des contractions dans les conditions normales
Le Bars Henri, Lebrument J., Simonnet Henri. Recherches sur la motricité dit rumen chez les petits Ruminants. Y. Oscillations de l'amplitude des contractions dans les conditions normales. In: Bulletin de l'Académie Vétérinaire de France tome 107 n°2, 1954. pp. 69-73
An observed 20-year time series of Agulhas leakage
We provide a time series of Agulhas leakage anomalies over the last 20-years from satellite altimetry. Until now, measuring the interannual variability of Indo-Atlantic exchange has been the major barrier in the investigation of the dynamics and large scale impact of Agulhas leakage. We compute the difference of transport between the Agulhas Current and Agulhas Return Current, which allows us to deduce Agulhas leakage. The main difficulty is to separate the Agulhas Return Current from the southern limb of the subtropical "supergyre" south of Africa. For this purpose, an algorithm that uses absolute dynamic topography data is developed. The algorithm is applied to a state-of-the-art ocean model. The comparison with a Lagrangian method to measure the leakage allows us to validate the new method. An important result is that it is possible to measure Agulhas leakage in this model using the velocity field along a section that crosses both the Agulhas Current and the Agulhas Return Current. In the model a good correlation is found between measuring leakage using the full depth velocities and using only the surface geostrophic velocities. This allows us to extend the method to along-track absolute dynamic topography from satellites. It is shown that the accuracy of the mean dynamic topography does not allow us to determine the mean leakage but that leakage anomalies can be accurately computed
La perfusion des organes digestifs. MĂ©thode d'Ă©tude de l'absorption
Le Bars Henri, Mollé J., Rérat Alain, Simonnet Henri. La perfusion des organes digestifs. Méthode d'étude de l'absorption. In: Bulletin de l'Académie Vétérinaire de France tome 111 n°6, 1958. pp. 305-310
- …