The elliptical instability is a generic instability which takes place in any
rotating flow whose streamlines are elliptically deformed. Up to now, it has
been widely studied in the case of a constant, non-zero differential rotation
between the fluid and the elliptical distortion with applications in
turbulence, aeronautics, planetology and astrophysics. In this letter, we
extend previous analytical studies and report the first numerical and
experimental evidence that elliptical instability can also be driven by
libration, i.e. periodic oscillations of the differential rotation between the
fluid and the elliptical distortion, with a zero mean value. Our results
suggest that intermittent, space-filling turbulence due to this instability can
exist in the liquid cores and sub-surface oceans of so-called synchronized
planets and moons