Several studies have already considered the influence of tides on the
evolution of systems composed of a star and a close-in companion to tentatively
explain different observations such as the spin-up of some stars with hot
Jupiters, the radius anomaly of short orbital period planets and the
synchronization or quasi-synchronization of the stellar spin in some extreme
cases. However, the nature of the mechanism responsible for the tidal
dissipation in such systems remains uncertain. In this paper, we claim that the
so-called elliptical instability may play a major role in these systems,
explaining some systematic features present in the observations. This
hydrodynamic instability, arising in rotating flows with elliptical
streamlines, is suspected to be present in both planet and star of such
systems, which are elliptically deformed by tides. The presence and the
influence of the elliptical instability in gaseous bodies, such as stars or hot
Jupiters, are most of the time neglected. In this paper, using numerical
simulations and theoretical arguments, we consider several features associated
to the elliptical instability in hot-Jupiter systems. In particular, the use of
ad hoc boundary conditions makes it possible to estimate the amplitude of the
elliptical instability in gaseous bodies. We also consider the influence of
compressibility on the elliptical instability, and compare the results to the
incompressible case. We demonstrate the ability for the elliptical instability
to grow in the presence of differential rotation, with a possible synchronized
latitude, provided that the tidal deformation and/or the rotation rate of the
fluid are large enough. Moreover, the amplitude of the instability for a
centrally-condensed mass of fluid is of the same order of magnitude as for an
incompressible fluid for a given distance to the threshold of the instability.
Finally, we show that the assumption of the elliptical instability being the
main tidal dissipation process in eccentric inflated hot Jupiters and
misaligned stars is consistent with current data.Comment: Icarus (2013) http://dx.doi.org/10.1016/j.icarus.2012.12.01