622 research outputs found

    Letter to the editor

    Get PDF
    AbstractThis letter shows how the main result contained in a paper recently appeared in the Journal of Multivariate Analysis was in fact a particular case of a more general theorem published three years before

    Spin dependent D-brane interactions and scattering amplitudes in matrix theory

    Get PDF
    Spin interactions beteween two moving Dp-branes are analyzed using the Green-Schwarz formalism of boundary states. This approach turns out to be extremely efficient to compute all the spin effects related by supersymmetry to the leading v^4/r^7-p term. All these terms are shown to be scale invariant, supporting a matrix model description of supergravity interactions. By employing the LSZ reduction formula for matrix theory and the mentioned supersymmetric effective potential for D0-branes, we compute the t-pole of graviton-graviton and three form-three form scattering in matrix theory. The results are found to be in complete agreement with tree level supergravity in the corresponding kinematical regime and provide, moreover, an explicit map between these degrees of freedom in both theories.Comment: 8 pages, no figures, talk presented at the conference "Quantum aspects of gauge theories, supergravity and unification", Corfu, Greece, to appear in the proceeding

    MAGIC observations of the microquasar V404 Cygni during the 2015 outburst

    Get PDF
    The microquasar V404 Cygni underwent a series of outbursts in 2015, June 15-31, during which its flux in hard X-rays (20-40 keV) reached about 40 times the Crab nebula flux. Because of the exceptional interest of the flaring activity from this source, observations at several wavelengths were conducted. The MAGIC telescopes, triggered by the INTEGRAL alerts, followed-up the flaring source for several nights during the period June 18-27, for more than 10 h. One hour of observation was simultaneously conducted on a giant 22 GHz radio flare and a hint of signal at GeV energies seen by Fermi-LAT. The MAGIC observations did not show significant emission in any of the analysed time intervals. The derived flux upper limit, in the energy range 200-1250 GeV, is 4.8 x 10(-12) photons cm(-2) s(-1). We estimate the gamma-ray opacity during the flaring period, which along with our non-detection points to an inefficient acceleration in the V404 Cyg jets if a very high energy emitter is located further than 1 x 10(10) cm from the compact object

    A first EGRET-UNID-related agenda for the next-generation Cherenkov telescopes

    Full text link
    The next generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) will open the regime between approx. 30 GeV and 200 GeV to ground-based gamma observations with unprecedented point source sensitivity and source location accuracy. I examine the prospects of observing the unidentified objects (UNIDs) of the Third EGRET Catalog using the IACT observatories currently under construction by the CANGAROO, HESS, MAGIC and VERITAS collaborations. Assuming a modest spectral steepening similar to that observed in the inverse Compton component of the Crab Nebula spectrum and taking into account the sensitivity of the instruments and its zenith angle dependence, a detailed list of 78 observable objects is derived which is then further constrained to 38 prime candidates. The characteristics of this agenda are discussed.Comment: 21 pages, 5 figures, to be published in Carraminana, Reimer & Thompson (eds.) Proc. "The nature of unidentified high-energy gamma-ray sources (Tonantzintla, Mexico, October 2000)", Kluwer Academi

    Prospects for Observations of Pulsars and Pulsar Wind Nebulae with CTA

    Full text link
    The last few years have seen a revolution in very-high gamma-ray astronomy (VHE; E>100 GeV) driven largely by a new generation of Cherenkov telescopes (namely the H.E.S.S. telescope array, the MAGIC and MAGIC-II large telescopes and the VERITAS telescope array). The Cherenkov Telescope Array (CTA) project foresees a factor of 5 to 10 improvement in sensitivity above 0.1 TeV, extending the accessible energy range to higher energies up to 100 TeV, in the Galactic cut-off regime, and down to a few tens GeV, covering the VHE photon spectrum with good energy and angular resolution. As a result of the fast development of the VHE field, the number of pulsar wind nebulae (PWNe) detected has increased from one PWN in the early '90s to more than two dozen firm candidates today. Also, the low energy threshold achieved and good sensitivity at TeV energies has resulted in the detection of pulsed emission from the Crab Pulsar (or its close environment) opening new and exiting expectations about the pulsed spectra of the high energy pulsars powering PWNe. Here we discuss the physics goals we aim to achieve with CTA on pulsar and PWNe physics evaluating the response of the instrument for different configurations.Comment: accepted for publication in Astroparticle Physic

    On the Lebesgue measure of Li-Yorke pairs for interval maps

    Get PDF
    We investigate the prevalence of Li-Yorke pairs for C2C^2 and C3C^3 multimodal maps ff with non-flat critical points. We show that every measurable scrambled set has zero Lebesgue measure and that all strongly wandering sets have zero Lebesgue measure, as does the set of pairs of asymptotic (but not asymptotically periodic) points. If ff is topologically mixing and has no Cantor attractor, then typical (w.r.t. two-dimensional Lebesgue measure) pairs are Li-Yorke; if additionally ff admits an absolutely continuous invariant probability measure (acip), then typical pairs have a dense orbit for fĂ—ff \times f. These results make use of so-called nice neighborhoods of the critical set of general multimodal maps, and hence uniformly expanding Markov induced maps, the existence of either is proved in this paper as well. For the setting where ff has a Cantor attractor, we present a trichotomy explaining when the set of Li-Yorke pairs and distal pairs have positive two-dimensional Lebesgue measure.Comment: 41 pages, 3 figure

    Unfolding of differential energy spectra in the MAGIC experiment

    Get PDF
    The paper describes the different methods, used in the MAGIC experiment, to unfold experimental energy distributions of cosmic ray particles (gamma-rays). Questions and problems related to the unfolding are discussed. Various procedures are proposed which can help to make the unfolding robust and reliable. The different methods and procedures are implemented in the MAGIC software and are used in most of the analyses.Comment: Submitted to NIM

    Implementation of the Random Forest Method for the Imaging Atmospheric Cherenkov Telescope MAGIC

    Get PDF
    The paper describes an application of the tree classification method Random Forest (RF), as used in the analysis of data from the ground-based gamma telescope MAGIC. In such telescopes, cosmic gamma-rays are observed and have to be discriminated against a dominating background of hadronic cosmic-ray particles. We describe the application of RF for this gamma/hadron separation. The RF method often shows superior performance in comparison with traditional semi-empirical techniques. Critical issues of the method and its implementation are discussed. An application of the RF method for estimation of a continuous parameter from related variables, rather than discrete classes, is also discussed.Comment: 16 pages, 8 figure

    Dark Matter and Fundamental Physics with the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV-TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2-3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10 deg. In the following study, we investigate the prospects for CTA to study several science questions that influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations, we employ a Monte Carlo based approach to evaluate the prospects for detection. First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, in the region close to the Galactic Centre, and in clusters of galaxies. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma rays from very distant blazars. Simulated light-curves of flaring sources are also used to determine the sensitivity to violations of Lorentz Invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA.Comment: (31 pages, Accepted for publication in Astroparticle Physics
    • …
    corecore