191 research outputs found

    Finger-vein individuals identification on massive databases

    Get PDF
    In massive biometric identification, response times highlydepend on the searching algorithms. Traditional systems operate with databases of up to 10,000 records. In large databases, with an increasing number of simultaneous queries, the system response time is a critical factor. This work proposes a GPU-based implementation for the matching process of finger-vein massive identification. Experimental resultss how that our approach solves up to 256 simultaneous queries on large databases achieving up to 136x.Instituto de Investigación en InformáticaInstituto de Investigación en Informátic

    Heap-based Algorithms to Accelerate Fingerprint Matching on Parallel Platforms

    Get PDF
    Nowadays, fingerprint is the most used biometric trait for individuals identification. In this area, the state-of-the-art algorithms are very accurate, but when the database contains millions of identities, an acceleration of the algorithm is required. From these algorithms, Minutia Cylinder-Code (MCC) stands out for its good results in terms of accuracy, however its efficiency in computational time is not high. In this work, we propose to use two different parallel platforms to accelerate fingerprint matching process by using MCC: (1) a multi-core server, and (2) a Xeon Phi coprocessor. Our proposal is based on heaps as auxiliary structure to process the global similarity of MCC. As heap-based algorithms are exhaustive (all the elements are accessed), we also explored the use an indexing algorithm to avoid comparing the query against all the fingerprints of the database. Experimental results show an improvement up to 97.15x of speed-up, which is competitive compared to other state-of-the-art algorithms in GPU and FPGA. To the best of our knowledge, this is the first work for fingerprint identification using a Xeon Phi coprocessor.Instituto de Investigación en Informátic

    Heap-based Algorithms to Accelerate Fingerprint Matching on Parallel Platforms

    Get PDF
    Nowadays, fingerprint is the most used biometric trait for individuals identification. In this area, the state-of-the-art algorithms are very accurate, but when the database contains millions of identities, an acceleration of the algorithm is required. From these algorithms, Minutia Cylinder-Code (MCC) stands out for its good results in terms of accuracy, however its efficiency in computational time is not high. In this work, we propose to use two different parallel platforms to accelerate fingerprint matching process by using MCC: (1) a multi-core server, and (2) a Xeon Phi coprocessor. Our proposal is based on heaps as auxiliary structure to process the global similarity of MCC. As heap-based algorithms are exhaustive (all the elements are accessed), we also explored the use an indexing algorithm to avoid comparing the query against all the fingerprints of the database. Experimental results show an improvement up to 97.15x of speed-up, which is competitive compared to other state-of-the-art algorithms in GPU and FPGA. To the best of our knowledge, this is the first work for fingerprint identification using a Xeon Phi coprocessor.Instituto de Investigación en Informátic

    Heterogeneous multi-robot system for mapping environmental variables of greenhouses

    Get PDF
    The productivity of greenhouses highly depends on the environmental conditions of crops, such as temperature and humidity. The control and monitoring might need large sensor networks, and as a consequence, mobile sensory systems might be a more suitable solution. This paper describes the application of a heterogeneous robot team to monitor environmental variables of greenhouses. The multi-robot system includes both ground and aerial vehicles, looking to provide flexibility and improve performance. The multi-robot sensory system measures the temperature, humidity, luminosity and carbon dioxide concentration in the ground and at different heights. Nevertheless, these measurements can be complemented with other ones (e.g., the concentration of various gases or images of crops) without a considerable effort. Additionally, this work addresses some relevant challenges of multi-robot sensory systems, such as the mission planning and task allocation, the guidance, navigation and control of robots in greenhouses and the coordination among ground and aerial vehicles. This work has an eminently practical approach, and therefore, the system has been extensively tested both in simulations and field experiments.The research leading to these results has received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. fase III; S2013/MIT-2748), funded by Programas de Actividades I+ D en la Comunidad de Madrid and co-funded by Structural Funds of the EU, and from the DPI2014-56985-Rproject (Protección robotizada de infraestructuras críticas) funded by the Ministerio de Economía y Competitividad of Gobierno de España. This work is framed on the SAVIER (Situational Awareness Virtual EnviRonment) Project, which is both supported and funded by Airbus Defence & Space. The experiments were performed in an educational greenhouse of the E.T.S.I.Agrónomos of Technical University of Madrid.Peer Reviewe

    Frontal sinus mucocele with intracranial and intraorbital extension

    Get PDF
    ABSTRACT Introduction: Frontal sinus mucoceles can present with a multitude of different symptoms including ophthalmic disturbances. Even benign, they have a tendency to expand by eroding the surrounding bony walls that displaces and destroys structures by pressure and bony resorption. Case report: A 32-year-old man with diplopia, proptosis of the right eye and headache was presented. The diagnosis was frontal sinus mucocele with intracranial and intraorbital extension. Possible clinical manifestations of mucoceles, diagnostic imaging techniques and treatment used are discussed. Conclusion: Frontal mucoceles are benign and curable, early recognition and management of them is of paramount importance, because they can cause local, orbital or intracranial complications

    Short-course versus long-course therapy of the same antibiotic for community-acquired pneumonia in adolescent and adult outpatients.

    Get PDF
    Background Community-acquired pneumonia (CAP) is a lung infection that can be acquired during day-to-day activities in the community (not while receiving care in a hospital). Community-acquired pneumonia poses a significant public health burden in terms of mortality, morbidity, and costs. Shorter antibiotic courses for CAP may limit treatment costs and adverse effects, but the optimal duration of antibiotic treatment is uncertain. Objectives To evaluate the efficacy and safety of short-course versus longer-course treatment with the same antibiotic at the same daily dosage for CAP in non-hospitalised adolescents and adults (outpatients). We planned to investigate non-inferiority of short-course versus longerterm course treatment for efficacy outcomes, and superiority of short-course treatment for safety outcomes. Search methods We searched CENTRAL, which contains the Cochrane Acute Respiratory Infections Group Specialised Register,MEDLINE, Embase, five other databases, and three trials registers on 28 September 2017 together with conference proceedings, reference checking, and contact with experts and pharmaceutical companies.SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing short- and long-courses of the same antibiotic for CAP in adolescent and adult outpatients. DATA COLLECTION AND ANALYSIS: We planned to use standard Cochrane methods. MAIN RESULTS: Our searches identified 5260 records. We did not identify any RCTs that compared short- and longer-courses of the same antibiotic for the treatment of adolescents and adult outpatients with CAP.We excluded two RCTs that compared short courses (five compared to seven days) of the same antibiotic at the same daily dose because they evaluated antibiotics (gemifloxacin and telithromycin) not commonly used in practice for the treatment of CAP. In particular, gemifloxacin is no longer approved for the treatment of mild-to-moderate CAP due to its questionable risk-benefit balance, and reported adverse effects. Moreover, the safety profile of telithromycin is also cause for concern.We found one ongoing study that we will assess for inclusion in future updates of the review. AUTHORS' CONCLUSIONS: We found no eligible RCTs that studied a short-course of antibiotic compared to a longer-course (with the same antibiotic at the same daily dosage) for CAP in adolescent and adult outpatients. The effects of antibiotic therapy duration for CAP in adolescent and adult outpatients remains unclear.pre-print547 K

    Frontal sinus mucocele with intracranial and intraorbital extension

    Get PDF
    ABSTRACT Introduction: Frontal sinus mucoceles can present with a multitude of different symptoms including ophthalmic disturbances. Even benign, they have a tendency to expand by eroding the surrounding bony walls that displaces and destroys structures by pressure and bony resorption. Case report: A 32-year-old man with diplopia, proptosis of the right eye and headache was presented. The diagnosis was frontal sinus mucocele with intracranial and intraorbital extension. Possible clinical manifestations of mucoceles, diagnostic imaging techniques and treatment used are discussed. Conclusion: Frontal mucoceles are benign and curable, early recognition and management of them is of paramount importance, because they can cause local, orbital or intracranial complications

    Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platforms

    Get PDF
    When searching on unstructured data (video, images, etc.), response times are a critical factor. In this work we propose an implementation on two types of multi-GPU and multi-node/multi-core platforms, for massive searches. The presented method aims to reduce the time involved in the search process by solving simultaneous queries over the system and a database of millions of elements. The results show that the multi-GPU approach is 1.6 times superior to the multi-node/multi-core algorithm. Moreover, in both algorithms the speedup is directly proportional to the number of nodes reaching 156x for 4 GPUs, and 87x in the case of the hybrid multi-node/multi-core algorithm.Instituto de Investigación en Informátic

    Practical applications using multi-UAV systems and aerial robotic swarms

    Get PDF
    [EN] Nowadays, there are a large number of unmanned aircraft on the market that can be commanded with high-level orders to perform complex tasks almost automatically, such as mapping crop fields. We can ask ourselves if it would be possible to coordinate a group of these robots to perform those same tasks more quickly, flexibly and robustly. In this work, we summarize the tasks that have been studied to be solved with systems composed by groups of unmanned aircraft and the algorithms used, as well as the methods and strategies on which they are based. Although the future of these systems is promising, there are certain legislative and technical obstacles that stop their implementation in a generalized way.[ES] A día de hoy, existen en el mercado una gran cantidad de aeronaves sin piloto que pueden ser comandadas con ordenes de alto nivel para realizar tareas complejas de forma casi automatica, como por ejemplo el mapeo de explotaciones agrícolas. De forma natural, nos podemos preguntar si sería posible coordinar a un grupo de estos robots para realizar esas mismas tareas de forma más rápida, flexible y robusta. En este trabajo se repasan las tareas que se han planteado resolver con sistemas compuestos por grupos de aeronaves no tripuladas y los algoritmos empleados, así como los metodos y estrategias en los que están basados. Aunque el futuro de estos sistemas es prometedor, existen ciertos obstaculos legislativos y técnicos que frenan su implantación de forma generalizada.Las investigaciones que han dado como resultado este trabajo han sido financiadas por RoboCity2030-DIH-CM, 426 Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, financiadas por los Programas de Actividades I+D en la Comunidad Madrid, y por el proyecto TASAR (Team of Advanced Search And Rescue Robots), PID2019-105808RB-I00, financiado por el Ministerio de Ciencia e Innovacion (Gobierno de España).García-Aunon, P.; Roldán, J.; De León, J.; Del Cerro, J.; Barrientos, A. (2021). Aplicaciones practicas de los sistemas multi-UAV y enjambres aéreos. Revista Iberoamericana de Automática e Informática industrial. 18(3):230-241. https://doi.org/10.4995/riai.2020.13560OJS230241183Acevedo, J. J., Arrue, B. C., Maza, I., Ollero, A., 2013. Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. Journal of Intelligent & Robotic Systems 70 (1-4), 329-345. https://doi.org/10.1007/s10846-012-9716-3Albani, D., IJsselmuiden, J., Haken, R., Trianni, V., 2017. Monitoring and mapping with robot swarms for agricultural applications. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, pp. 1-6. https://doi.org/10.1109/AVSS.2017.8078478Alvear, O., Zema, N. R., Natalizio, E., Calafate, C. T., 2017. Using uav-based systems to monitor air pollution in areas with poor accessibility. Journal of Advanced Transportation 2017. https://doi.org/10.1155/2017/8204353Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W., Willmann, J. S., Gramazio, F., Kohler, M., D'Andrea, R., 2014. The flight assembled architecture installation: Cooperative construction with flying machines. IEEE Control Systems Magazine 34 (4), 46-64. https://doi.org/10.1109/MCS.2014.2320359Barrientos, A., Colorado, J., Cerro, J. d., Martinez, A., Rossi, C., Sanz, D., Valente, J., 2011. Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. Journal of Field Robotics 28 (5), 667-689. https://doi.org/10.1002/rob.20403Beck, Z., Teacy, W. L., Rogers, A., Jennings, N. R., 2018. Collaborative online planning for automated victim search in disaster response. Robotics and Autonomous Systems 100, 251-266. https://doi.org/10.1016/j.robot.2017.09.014Bennet, D. J., MacInnes, C., Suzuki, M., Uchiyama, K., 2011. Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles. Journal of guidance, control, and dynamics 34 (6), 1899-1908. https://doi.org/10.2514/1.53931Bernard, M., Kondak, K., Maza, I., Ollero, A., 2011. Autonomous transportation and deployment with aerial robots for search and rescue missions. Journal of Field Robotics 28 (6), 914-931. https://doi.org/10.1002/rob.20401Carrasco, Á. M., Novoa, S. C., Al-Kaff, A., Fernández, F. G., Gómez, D. M., de la Escalera Hueso, A., 2020. Vehículo aéreo no tripulado para vigilancia y monitorización de incendios. Revista Iberoamericana de Automática e Informática industrial.Chen, S., Li, C., Zhuo, S., 2017. A distributed coverage algorithm for multiuav with average voronoi partition. In: 2017 17th International Conference on Control, Automation and Systems (ICCAS). IEEE, pp. 1083-1086. https://doi.org/10.23919/ICCAS.2017.8204377Cieslewski, T., Choudhary, S., Scaramuzza, D., 2018. Data-efficient decentralized visual slam. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 2466-2473. https://doi.org/10.1109/ICRA.2018.8461155Cimino, M. G., Lazzeri, A., Vaglini, G., 2015. Combining stigmergic and flocking behaviors to coordinate swarms of drones performing target search. In: 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE, pp. 1-6. https://doi.org/10.1109/IISA.2015.7387990Cledat, E., Cucci, D., 2017. Mapping gnss restricted environments with a drone tandem and indirect position control. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 4, 1. https://doi.org/10.5194/isprs-annals-IV-2-W3-1-2017Cole, D. T., Thompson, P., Göktogan, A. H., Sukkarieh, S., 2010. System development and demonstration of a cooperative uav team for mapping and tracking. The International Journal of Robotics Research 29 (11), 1371-1399. https://doi.org/10.1177/0278364910364685Darrah, M., Trujillo, M. M., Speransky, K., Wathen, M., 2017. Optimized 3d mapping of a large area with structures using multiple multirotors. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 716-722. https://doi.org/10.1109/ICUAS.2017.7991414Erignac, C., 2007. An exhaustive swarming search strategy based on distributed pheromone maps. In: AIAA Infotech@ Aerospace 2007 Conference and Exhibit. p. 2822. https://doi.org/10.2514/6.2007-2822Fu, Z., Chen, Y., Ding, Y., He, D., 2019. Pollution source localization based on multi-uav cooperative communication. IEEE Access 7, 29304-29312. https://doi.org/10.1109/ACCESS.2019.2900475Fujisawa, R., Imamura, H., Hashimoto, T., Matsuno, F., 2008. Communication using pheromone field for multiple robots. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 1391-1396. https://doi.org/10.1109/IROS.2008.4650971Garcia-Aunon, P., Barrientos, A., 2018a. Comparison of heuristic algorithms in discrete search and surveillance tasks using aerial swarms. Applied Sciences 8 (5), 711. https://doi.org/10.3390/app8050711Garcia-Aunon, P., Barrientos, A., 2018b. Control optimization of an aerial robotic swarm in a search task and its adaptation to different scenarios. Journal of computational science 29, 107-118. https://doi.org/10.1016/j.jocs.2018.10.004Garcia-Aunon, P., del Cerro, J., Barrientos, A., 2019a. Behavior-based control for an aerial robotic swarm in surveillance missions. Sensors 19 (20), 4584. https://doi.org/10.3390/s19204584Garcia-Aunon, P., Roldan, J. J., Barrientos, A., 2019b. Monitoring traffic in future cities with aerial swarms: Developing and optimizing a behavior-based surveillance algorithm. Cognitive Systems Research 54, 273-286. https://doi.org/10.1016/j.cogsys.2018.10.031Garnier, S., Tache, F., Combe, M., Grimal, A., Theraulaz, G., 2007. Alice in pheromone land: An experimental setup for the study of ant-like robots. In: 2007 IEEE Swarm Intelligence Symposium. IEEE, pp. 37-44. https://doi.org/10.1109/SIS.2007.368024George, J., Sujit, P., Sousa, J. B., 2011. Search strategies for multiple uav search and destroy missions. Journal of Intelligent & Robotic Systems 61 (1-4), 355-367. https://doi.org/10.1007/s10846-010-9486-8Hadaegh, F. Y., Chung, S.-J., Manohara, H. M., 2014. On development of 100- gram-class spacecraft for swarm applications. IEEE Systems Journal 10 (2), 673-684. https://doi.org/10.1109/JSYST.2014.2327972Han, J., Xu, Y., Di, L., Chen, Y., 2013. Low-cost multi-uav technologies for contour mapping of nuclear radiation field. Journal of Intelligent & Robotic Systems 70 (1-4), 401-410. https://doi.org/10.1007/s10846-012-9722-5Hauert, S., Winkler, L., Zufferey, J.-C., Floreano, D., 2008. Ant-based swarming with positionless micro air vehicles for communication relay. Swarm Intelligence 2 (2-4), 167-188. https://doi.org/10.1007/s11721-008-0013-5Hinzmann, T., Stastny, T., Conte, G., Doherty, P., Rudol, P., Wzorek, M., Galceran, E., Siegwart, R., Gilitschenski, I., 2016. Collaborative 3d reconstruction using heterogeneous uavs: System and experiments. In: International Symposium on Experimental Robotics. Springer, pp. 43-56. https://doi.org/10.1007/978-3-319-50115-4_5Ju, C., Son, H., 2018. Multiple uav systems for agricultural applications: control, implementation, and evaluation. Electronics 7 (9), 162. https://doi.org/10.3390/electronics7090162Kim, J. H., Kwon, J.-W., Seo, J., 2014. Multi-uav-based stereo vision system without gps for ground obstacle mapping to assist path planning of ugv. Electronics Letters 50 (20), 1431-1432. https://doi.org/10.1049/el.2014.2227Lanillos, P., Gan, S. K., Besada-Portas, E., Pajares, G., Sukkarieh, S., 2014. Multi-uav target search using decentralized gradient-based negotiation with expected observation. Information Sciences 282, 92-110. https://doi.org/10.1016/j.ins.2014.05.054Li, W., 2015. Persistent surveillance for a swarm of micro aerial vehicles by flocking algorithm. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 229 (1), 185-194. https://doi.org/10.1177/0954410014529100Lyu, Y., Pan, Q., Zhang, Y., Zhao, C., Zhu, H., Tang, T., Liu, L., 2015. Simultaneously multi-uav mapping and control with visual servoing. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 125-131. https://doi.org/10.1109/ICUAS.2015.7152283Mahdoui, N., Frémont, V., Natalizio, E., 2017. Cooperative exploration strategy for micro-aerial vehicles fleet. In: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). IEEE, pp. 180-185. https://doi.org/10.1109/MFI.2017.8170426Maza, I., Ollero, A., 2007. Multiple uav cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Distributed Autonomous Robotic Systems 6. Springer, pp. 221-230. https://doi.org/10.1007/978-4-431-35873-2_22Mirjan, A., Gramazio, F., Kohler, M., Augugliaro, F., D'Andrea, R., 2013. Architectural fabrication of tensile structures with flying machines. Green Design, Materials and Manufacturing Processes, 513-518. https://doi.org/10.1201/b15002-99Niedzielski, T., Jurecka, M., Mizinski, B., Remisz, J., Slopek, J., Spallek, W., Witek-Kasprzak, M., Kasprzak, Ł., Swierczynska-Chlasciak, M., 2018. A real-time field experiment on search and rescue operations assisted by unmanned aerial vehicles. Journal of Field Robotics 35 (6), 906-920. https://doi.org/10.1002/rob.21784Nigam, N., Bieniawski, S., Kroo, I., Vian, J., 2011. Control of multiple uavs for persistent surveillance: algorithm and flight test results. IEEE Transactions on Control Systems Technology 20 (5), 1236-1251. https://doi.org/10.1109/TCST.2011.2167331Odonkor, P., Ball, Z., Chowdhury, S., 2019. Distributed operation of collaborating unmanned aerial vehicles for time-sensitive oil spill mapping. Swarm and Evolutionary Computation 46, 52-68. https://doi.org/10.1016/j.swevo.2019.01.005Oh, S.-H., Suk, J., 2010. Evolutionary design of the controller for the search of area with obstacles using multiple uavs. In: ICCAS 2010. IEEE, pp. 2541- 2546. https://doi.org/10.1109/ICCAS.2010.5670230Perez-Carabaza, S., Besada-Portas, E., Lopez-Orozco, J. A., Jesus, M., 2018. Ant colony optimization for multi-uav minimum time search in uncertain domains. Applied Soft Computing 62, 789-806. https://doi.org/10.1016/j.asoc.2017.09.009Qu, Y., Zhang, Y., Zhang, Y., 2015. A uav solution of regional surveillance based on pheromones and artificial potential field theory. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 380-385. https://doi.org/10.1109/ICUAS.2015.7152313Rastgoftar, H., Atkins, E. M., 2018. Cooperative aerial lift and manipulation (calm). Aerospace Science and Technology 82, 105-118. https://doi.org/10.1016/j.ast.2018.09.005Reina, D., Tawfik, H., Toral, S., 2018. Multi-subpopulation evolutionary algorithms for coverage deployment of uav-networks. Ad Hoc Networks 68, 16-32. https://doi.org/10.1016/j.adhoc.2017.09.005Reuder, J., Jonassen, M. O., Olafsson, H., 2012. The small unmanned meteorological observer sumo: Recent developments and applications of a micro-uas for atmospheric boundary layer research. Acta Geophysica 60 (5), 1454- 1473. https://doi.org/10.2478/s11600-012-0042-8Reynolds, C. W., 1987. Flocks, herds and schools: A distributed behavioral model. Vol. 21. ACM. https://doi.org/10.1145/37402.37406Roldan, J. J., Garcia-Aunon, P., Peña-Tapia, E., Barrientos, A., 2019. Swarm-city project: Can an aerial swarm monitor traffic in a smart city? In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, pp. 862-867. https://doi.org/10.1109/PERCOMW.2019.8730677Santamaria, E., Segor, F., Tchouchenkov, I., 2013. Rapid aerial mapping with multiple heterogeneous unmanned vehicles. In: ISCRAM. Citeseer.Saska, M., Chudoba, J., Preucil, L., Thomas, J., Loianno, G., Tresnak, A., Vonasek, V., Kumar, V., 2014. Autonomous deployment of swarms of microaerial vehicles in cooperative surveillance. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 584-595. https://doi.org/10.1109/ICUAS.2014.6842301Savkin, A. V., Huang, H., 2019. Asymptotically optimal deployment of drones for surveillance and monitoring. Sensors 19 (9), 2068. https://doi.org/10.3390/s19092068Schilling, F., Lecoeur, J., Schiano, F., Floreano, D., 2018. Learning visionbased cohesive flight in drone swarms. arXiv preprint arXiv:1809.00543.Schmuck, P., Chli, M., 2017. Multi-uav collaborative monocular slam. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 3863-3870. https://doi.org/10.1109/ICRA.2017.7989445Silic, M. B., Song, Z., Mohseni, K., 2018. Anisotropic flocking control of distributed multi-agent systems using fluid abstraction. In: 2018 AIAA Information Systems-AIAA Infotech@ Aerospace. p. 2262. https://doi.org/10.2514/6.2018-2262Sreenath, K., Kumar, V., 2013. Dynamics, control and planning for cooperative manipulation of payloads suspended by cables from multiple quadrotor robots. rn 1 (r2), r3. https://doi.org/10.15607/RSS.2013.IX.011St-Onge, D., Kaufmann, M., Panerati, J., Ramtoula, B., Cao, Y., Coffey, E. B., Beltrame, G., 2019. Planetary exploration with robot teams. IEEE Robotics & Automation Magazine.Stavros, E. N., Agha, A., Sirota, A., Quadrelli, M., Ebadi, K., Yun, K., 2019. Smoke sky-exploring new frontiers of unmanned aerial systems for wildland fire science and applications. arXiv preprint arXiv:1911.08288.Techy, L., Schmale III, D. G., Woolsey, C. A., 2010. Coordinated aerobiological sampling of a plant pathogen in the lower atmosphere using two autonomous unmanned aerial vehicles. Journal of Field Robotics 27 (3), 335-343. https://doi.org/10.1002/rob.20335Tuna, G., Nefzi, B., Conte, G., 2014. Unmanned aerial vehicle-aided communications system for disaster recovery. Journal of Network and Computer Applications 41, 27-36. https://doi.org/10.1016/j.jnca.2013.10.002Twidwell, D., Allen, C. R., Detweiler, C., Higgins, J., Laney, C., Elbaum, S., 2016. Smokey comes of age: unmanned aerial systems for fire management. Frontiers in Ecology and the Environment 14 (6), 333-339. https://doi.org/10.1002/fee.1299Vasarhelyi, G., Viragh, C., Somorjai, G., Tarcai, N., Szorenyi, T., Nepusz, T., Vicsek, T., 2014. Outdoor flocking and formation flight with autonomous aerial robots. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 3866-3873. https://doi.org/10.1109/IROS.2014.6943105Verdu, T., Hattenberger, G., Lacroix, S., 2019. Flight patterns for clouds exploration with a fleet of uavs. https://doi.org/10.1109/ICUAS.2019.8797953Waharte, S., Trigoni, N., 2010. Supporting search and rescue operations with uavs. In: 2010 International Conference on Emerging Security Technologies. IEEE, pp. 142-147. https://doi.org/10.1109/EST.2010.31Wang, Z., Singh, S., Pavone, M., Schwager, M., 2018. Cooperative object transport in 3d with multiple quadrotors using no peer communication. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1064-1071. https://doi.org/10.1109/ICRA.2018.8460742Zhao, N., Lu, W., Sheng, M., Chen, Y., Tang, J., Yu, F. R., Wong, K.-K., 2019. Uav-assisted emergency networks in disasters. IEEE Wireless Communications 26 (1), 45-51. https://doi.org/10.1109/MWC.2018.1800160Zheng, X., Wang, F., Li, Z., 2018. A multi-uav cooperative route planning methodology for 3d fine-resolution building model reconstruction. ISPRS journal of photogrammetry and remote sensing 146, 483-494. https://doi.org/10.1016/j.isprsjprs.2018.11.00

    Computational methods and rural cultural & natural heritage: A review

    Get PDF
    Cultural and Natural Heritage (CNH) are both irreplaceable sources of life and inspiration, according to the UNESCO definition. Rural areas represent outstanding examples of cultural, either tangible or intangible, and natural heritage. While rural areas are facing a socio-economic and demographic crisis all over the world, CNH need not only to be safeguarded, but also promoted as a driver for competitiveness, growth and sustainable and inclusive development. This paper goes deeper into the study of computational methods (CMs) applied to modelling CNH in rural areas by looking at how computational methods can support CNH promotion and valorisation to transform rural areas into laboratories for the demonstration of sustainable development through improving the unique potential of their heritage. To this end, different computational methods have been studied and classified according to their scope and application area parameters, showing some correlation among the said parameters and the class of computational method. Apart from how CMs have been applied, wehether it is possible to scale up these CMs elsewhere has also been considered
    corecore