
Finger-vein individuals identification on massive
databases

Sebastián Guidet1 , Ricardo J. Barrientos2,3 , Fernando Emmanuel
Frati1 , and Ruber Hernández-Garćıa2

1 Department of Basic and Technological Sciences,
Universidad Nacional de Chilecito, Chilecito, La Rioja, Argentina

sguidet@undec.edu.ar, fefrati@undec.edu.ar
2 Laboratory of Technological Research in Pattern Recognition (LITRP),

Faculty of Engineering Sciences, Universidad Católica del Maule, Talca, Chile
rbarrientos@ucm.cl, rhernandez@ucm.cl

3 Department of Computer Science and Industries, Faculty of Engineering Science,
Universidad Católica del Maule, Talca, Chile

Abstract. In massive biometric identification, response times highly
depend on the searching algorithms. Traditional systems operate with
databases of up to 10,000 records. In large databases, with an increasing
number of simultaneous queries, the system response time is a critical
factor. This work proposes a GPU-based implementation for the match-
ing process of finger-vein massive identification. Experimental results
show that our approach solves up to 256 simultaneous queries on large
databases achieving up to 136x.

Keywords: High Performance Computing, identification of individuals,
local linear binary pattern, finger veins, GPU.

1 Introduction

Massive identification of individuals by using biometric techniques is a difficult
problem in modern society. Particularly, vein-based biometric provides univer-
sality, distinctiveness, permanence, and acceptability. In the literature, different
approaches based on finger-vein recognition [4] report several advantages of the
finger-vein biometrics, such as high accuracy, high resistance to criminal ma-
nipulation (very difficult to copy or forge), authentication speed, compact size,
liveness detection, and does not suffer damage or change over time.

On the other hand, the searching process on a biometric database consists
of an exhaustive searching by calculating similarity metrics between the stored
elements and the sample to be identified. As the size of the database increases,
the identification accuracy decreases, while the recognition process execution
time increases significantly. Besides, a high rate of queries per unit time is to
be expected in this type of system. Thus, it is essential to ensure a reasonable
response time [1].

This paper proposes a searching method based on GPGPU (general-purpose
computing on graphics processing units) for finger-vein individuals identification

Short Papers of the 8th Conference on Cloud Computing Conference, Big Data & Emerging Topics

14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/334434937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


on massive databases. Our approach guarantees an adequate response time by
using the Vertical Linear Binary Pattern (LLBPv) descriptor and the Hamming
distance as a similarity function. As far as we know, no real application has been
proposed for finger-vein massive identification on GPU platforms, which is the
main novelty of our approach.

2 Finger-vein identification system

A finger-vein identification system comprises of four main processes. Initially,
a near-infrared (NIR) imaging device (700-1000 nm) captures an image of the
finger-vein patterns. Later, the pre-processing stage obtains the region of interest
(ROI) and enhances image quality. For ROI segmentation, we adopt the method
proposed in [5], which is robust to finger movement and rotation. Also, the
limited adaptive histogram equalization technique (CLAHE) is applied to adjust
differences in illumination and contrast [6]. During the feature extraction process,
the final enhanced image is represented by using the Vertical Local Line Binary
Pattern (LLBPv) descriptor. This descriptor decreases the computation-time
and its straight-line shape extracts robust features from images with unclear
veins [3]. Finally, the searching process is performed on the database by using a
similarity function. The following section describes this last procedure in more
detail.

3 Searching process on a massive database

Individuals identification consists of a 1:N exhaustive searching on the database,
which means comparing the individual’s sample against each record of the databa-
se. Each comparison computes a similarity score between the extracted binary
code (i.e LLBPv descriptor) and the stored codes. The Hamming’s distance
similarity function is adopted for this calculation due to its effectiveness for
comparing binary codes [3]. When two codes correspond to the same finger, the
similarity score tends to be 0. Instead, if the codes are from different fingers, the
value is closer to 1.

The searching procedure returns a list of 32 records sorted by the similarity
score in ascending order. We only obtain the first 32 results because it is the
lowest perfect recognition range for LLBPv with the best accuracy performance
[2].

This process must be performed for every query received by the system.
Thus, the workload of the system increases with a high rate of queries per unit
time, and the data volume to be processed increases significantly, therefore the
response time should be reduced and to use a GPU is a suitable solution.

3.1 GPU-based searching algorithm

Aiming to speed up the computation time of the searching process, our pro-
posed solution divides the similarity calculation tasks among all GPU threads.
Through coalescing access, consecutive threads access to consecutive memory ad-
dresses, facilitating I/O operations. The entire database is copied to the global
memory (DRAM), and for decreasing the read operations latency, the records to

Short Papers of the 8th Conference on Cloud Computing Conference, Big Data & Emerging Topics

15



be processed are moved to the shared memory (Flash L1 type) of each CUDA
Block.

Each GPU thread makes comparison calculations between the query to be
identified and the records on the database. Our proposed algorithm uses the
shared memory to store the query and also a set of heap data structure, and
this implies that it is only possible to execute 128 threads per CUDA Block in
our kernel. Each GPU thread keep the lowest distances found in its heap stored
in shared memory. We choose a heap data structure because its efficiency in
the insertion and extraction operations. As a result of this process, each CUDA
Block reduces the database to 128 heaps of 32 records each. Then, taking account
that a warp (32 threads) is the minimum execution unit in GPU, the threads
of the first warp of each CUDA Block access the data previously found, and
reduce them to elements stored in 32 heaps in shared memory. Finally, the first
thread of each CUDA Block reduce the elements of the 32 previous heaps to
just one heap with the 32 lower elements, also stored in shared memory. Each
CUDA Block transfers its 32 elements to CPU, where all of them are merged,
and a sequential quicksort algorithm is performed over these elements to select
the lowest final distance.

When the system replies to multiple simultaneous queries, it repeats the
whole process described for each query request.

4 Experimental work
The experimental environment consists of a GPU NVIDIA GeForce GTX 1080
Ti with 3584 CUDA cores and 11GB GDDR5X memory, and the host computer
is composed of 2 × Intel Xeon Gold 6140 CPU @ 2.30GHz, in total 36 physical
cores, 24.75MB L3 cache and 128GB RAM.

To evaluate the performance of the proposed algorithm responding to a high
query traffic, we use the BigFVDB dataset, which was generated in our previous
work [2]. For these experiments we used 339,968 samples, due the capacity limits
on the GPU global memory. It should be noted that a query in BigFVDB can
only have one possible result, but it performs 1:N matching comparisons.

The experiments were performed by increasing the number of available queries
on the system, starting with 4 up to 512 by increasing in power of two. To ob-
tain an unbiased result and to guarantee the stability of the results, the time
measurements were averaged by repeating each test 100 times. Besides, it was
checked that in all experiments the same results were obtained for the same
comparisons. In all cases, the maximum expected response time was 10 seconds
(time threshold), which was defined based on previous evaluations [2]. However,
it could vary according to the system requirements and the size of the database
to be processed. Figure 1 summarizes the obtained results. It is worth highlight-
ing that the proposed method solves up to 512 queries while keeping the response
time less than the time threshold, keeping a very similar time in solving each
different query.

It should be clarified that for the calculation of speed - up (Time(Sequential)/
Time(Parallel)) in the Figure 1. (b) the time of execution of the sequential version
in CPU was taken as reference.

Short Papers of the 8th Conference on Cloud Computing Conference, Big Data & Emerging Topics

16



0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

18

20

Simultaneous queries

P
ro

ce
ss

in
g 

tim
e 

(s
ec

on
ds

)

(a) time of the proposed GPU-based

50 100 200 300 400 500
0

20

40

60

80

100

120

140

Number of queries

S
pe

ed
−

up

(b) Speed-up

Fig. 1: Running time of our proposed GPU-based algorithm and its speed-up
solving different quantity of queries.

5 Conclusions
This paper presents a GPU-based implementation for massive finger-vein indi-
viduals identification. The proposed method aims to reduce the computation
time of the searching process over a high query traffic. We used a set of heaps
as auxiliary structures to keep the lower elements found, and we also propose an
algorithm in GPU to reduce the elements of the heaps to obtain the final query
result.

The experimental validation shows that the proposed approach obtains a
linear behavior as the workload increases. The proposed method keeps response
times lower than 10 seconds with an increasing number of simultaneous queries,
without requiring to increase the involved hardware resources, achieving up to
136x of speed-up solving 500 queries.

Future work plans to evaluate the proposed approach by increasing the num-
ber of individuals in the database, to reach 16 million records. Using a database
of this size faces the issue of the overall memory capacity of the GPU.

References

1. Cappelli, R., Ferrara, M., Maltoni, D.: Large-scale fingerprint identification on gpu.
Information Sciences 306, 1–20 (2015)

2. Hernández-Garćıa, R., Guidet, S., Barrientos, R.J., Frati, F.E.: Massive finger-vein
identification based on local line binary pattern under parallel and distributed sys-
tems. In: 2019 38th International Conference of the Chilean Computer Science So-
ciety (SCCC). pp. 1–7. IEEE (2019)

3. Rosdi, B.A., W.Shing, C., Suandi, S.A.: Finger vein recognition using local line
binary pattern. Sensors 11, 11357–11371 (2011)

4. Shaheed, K., Liu, H., Yang, G., Qureshi, I., Gou, J., Yin, Y.: A systematic review
of finger vein recognition techniques. Information 9(9), 213 (2018)

5. Yang, L., Yang, G., Yin, Y., Xiao, R.: Sliding window-based region of interest ex-
traction for finger vein images. Sensors 13(3), 3799–3815 (2013)

6. Zuiderveld, K.: Contrast Limited Adaptive Histogram Equalization. In: Heckbert,
P.S. (ed.) Chapter VIII.5, Graphics Gems IV, pp. 474–485. Academic Press Profes-
sional, Inc. (1994)

Short Papers of the 8th Conference on Cloud Computing Conference, Big Data & Emerging Topics

17


