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Abstract. Nowadays, fingerprint is the most used biometric trait for in
dividuals identification. In this area, the state-of-the-art algorithms are 
very accurate, but when the database contains millions of identities, an 
acceleration of the algorithm is required. From these algorithms, Minutia 
Cylinder-Code (MCC) stands out for its good results in terms of accu
racy, however its efficiency in computational time is not high. In this 
work, we propose to use two different parallel platforms to accelerate 
fingerprint matching process by using MCC: (1) a multi-core server, and 
(2) a Xeon Phi coprocessor. Our proposal is based on heaps as auxiliary 
structure to process the global similarity of MCC. As heap-based algo
rithms are exhaustive (all the elements are accessed), we also explored 
the use an indexing algorithm to avoid comparing the query against all 
the fingerprints of the database. Experimental results show an improve
ment up to 97.15x of speed-up, which is competitive compared to other 
state-of-the-art algorithms in GPU and FPGA. To the best of our knowl
edge, this is the first work for fingerprint identification using a Xeon Phi 
coprocessor.
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1 Introduction

Fingerprint identification is the most used biometric method to automatically 
recognize the identity of a person [17], thanks to its usability and reliability
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[23]. Fingerprints are the most studied biometric trait [11], and different algo
rithms have been proposed since 1975 to deal with them in their acquisition [20], 
processing [5], classification [11], and matching [6].

A fingerprint consists of a set of curves or lines, known as ridges. A ridge is de
fined as a single curved segment, and a valley is the region between two adjacent 
ridges. The discontinuities in the ridges, such as terminations and bifurcations, 
are called minutiae (see Figure 1(a)). Formally, minutiae are points typically 
represented as a triplet (x, y, 0), where x and y represent the point coordinates 
and 6 is the ridge direction at that point. These unique features are mathemati
cally represented as a biometric template (also called template), which is stored 
in a biometric database. These templates are used in different ways for matching 
purposes. Although there are several fingerprint matching algorithms, the most 
common approaches are based on minutiae [11]. The objective of a minutiae- 
based algorithm is to find the maximum quantity of matching between pairs of 
two fingerprints.

Minutia Cylinder-Code (MCC) [6] is an accurate algorithm for fingerprint 
identification, which takes 45 milliseconds for one comparison between two fin
gerprints. Thus, it implies 45 seconds for a database with 1000 fingerprints, 
which is a considerable time, especially when the database reaches the order of 
tens thousands or more fingerprints. There are two usual methods to decrease 
the execution time in this case, which are (1) to avoid comparing all fingerprint 
pairs by using classification methods [8,16] or indexing algorithms [7, 4], and (2) 
to accelerate the matching processing by using parallel computing [27, 21].

In this work, we explored to use both methods aiming to accelerate finger
print matching process by using MCC. For this purpose, we employ a Xeon 
Phi coprocessor, which is one of the most promising alternatives for algorithms 
acceleration in the current technological context [29]. Besides, our proposal is 
based on heaps as auxiliary structure to process the global similarity of MCC. As 
heap-based algorithms are exhaustive (all the elements are accessed), we also use 
an indexing algorithm to avoid comparing the query against all the fingerprints 
of the database. There are several indexing algorithms to accelerate searching 
process on metric spaces [9, 26,10]. In our approach, we selected the List of Clus
ters index [9] because it has shown good properties in different parallel platforms 
previously [25,12,1].

Thus, we propose a parallel algorithm based on heaps using a Xeon Phi co
processor with the aim to obtain a high speed-up over the sequential counterpart, 
and showing how suitable is this parallel platform for fingerprint identification. 
To the best of our knowledge, this is the first approach with this coprocessor to 
accelerate fingerprint matching.

2 Related Work

2.1 Minutia Cylinder-Code

The Minutia Cylinder-Code algorithm [6], is currently one of the best methods to 
represent fingerprints and to execute a match making process. The main idea of
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(a) Bifurca
tions and ridge 
endings are de
picted in blue 
and red color, 
respectively. The 
orange circle lo
cates the core of 
the fingerprint.

(b) Example of a neighborhood Npm.: A cylinder section 
representing a neighborhood Npv. that is associated to 
a given minutia m in the center of this cylinder section. 
The darker section is the place where the highest point 
value lays (center of a cell), therefore it represents a higher 
contribution value Cm. The minutiae that are within the 
dark zone, are the neighborhood Np™..

Fig. 1. Minutiae and their representation by MCC.

the representation of the MCC is to generate a local structure for each minutia m 
in a given template T, where the structure is created by a spatial and directional 
relationship between the minutiae and their neighborhood, which is set according 
to a fixed radio [14], Each local point is associated with a 3D structure, called 
cylinder. This cylinder is associated with each minutia m of a fingerprint (see 
Figure 1(b)).

Figure 2(a) depicts the local structure of a cylinder. Each cylinder is centered 
on a minutia m that has a fixed radius and a height (from -tv to %) of 27?. In 
addition, all cylinders have the same size, because the fixed ratio. Each cylinder 
is discretized in Ns x Ns x Nd cells. Each cell is a small cuboid with As x Ag 
base and Ap height, where Ag = and Ap = [6]. Ns is defined as the 2D
space around a minutia m Ns x Ns and Ap represents the number of divisions 
that are applied to the height of 2tt which represents the angular distance [14],

A numerical value is associated to each cell, also known as contribution 
Cm(i, j,k), which is the sum of the contributions of each minutia mt belong
ing to the neighborhood Np™. at the point [22]. Based on the location and 
direction of each minutia in the neighborhood Np™ , the values of both spatial 
and directional contributions are higher when: (1) the location is close to the 
point p™, and (2) the direction is close to the angle set by By way of expla
nation [7], the value of a cell is a probability. This probability is higher when a 
minutia is close to a cell and its direction is similar to the value dp/,- (see Figure 
2(b)).

A characteristic of MCC is that it can represent the value of each cell as 
a bit [7,6]. In this work, we propose algorithms to perform the matching of 
fingerprints through the binary cylinders obtained from the MCC. The local 
similarity between two cylinders can be simply estimated by applying simple
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(a) Local structure of a cylinder as
sociated to a minutia m in MCC.

(b) Real (left) and bi
nary (right) representation 
of the same cylinder.

Fig- 2. Local structure of a cylinder and its graphical representations.

bitwise operations (and, exclusive-or, population-count) between the two cor
responding binary vectors[6]. Thus, in order to compare two fingerprints, an 
overall score denoting their global similarity, has to be obtained from the local 
similarities. We used in the experiments as global similarity the Local Similarity 
Sort (LSS). This technique sorts the local similarity values and computes the 
average of the best n values, where the value of n is defined according to [6] by 
n = minnp + [(Z(min{iiA, np}, Up, tp)) ■ (maxnp — minnp)~\, where ua and np 
are the number of minutiae of the templates to be compared; • denotes the 
rounding operator; and Z is the function defined as Z(v,/j.,t) = —— .
We used the same values proposed in [6] for p.P = 20, tp = 2/5, minnp = 4, and 
maxnp = 12.

2.2 Intel Xeon Phi coprocessor

The Intel Xeon Phi coprocessor [28,29] consists of 61 to 72 cores connected 
by a high performance on-die bidirectional interconnect. The coprocessor runs 
a Linux operating system and supports all main Intel development tools like 
C/C++, Fortran, MPI and OpenMP. The coprocessor is connected to an Intel 
Xeon processor (the host) via the PCI Express (PICe) bus. It is mainly composed 
of cores, which have one Vector Processing Unit (VPU), and one LI and L2 
cache per core. In the VPU each operation can be a fused multiply-add giving 
32 single-precision or 16 double-precision floating-point operations per cycle. 
This architecture has a complex vector unit. However, empirical studies show 
that the efficient exploitation of the vector unit is crucial to achieve a significant 
performance improvement [28]. A limitation of using a Xeon Phi, such as in 
other coprocessors, is to deal with the transfers to/from the CPU.
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2.3 Approaches based on Parallel Computing

The algorithm MCC has shown very high performance in terms of accuracy, but 
it requires a high computation cost. In the Parallel Computing area, the use of 
coprocessors to accelerate processing is being exploited, and currently there are 
three main coprocessors used for this purpose: GPU, FPGA, and Intel Xeon Phi.

In the present work, beside proposing and implementing a multi-core algo
rithm, we also developed a Xeon Phi algorithm, which is to the best of our 
knowledge the first algorithm with this coprocessor to accelerate fingerprint 
matching. We compare our algorithms to previous state-of-the-art approaches 
that use different parallel platforms with the MCC algorithm [15,18, 22].

Gutierrez et al. [15] implement an algorithm based on GPU for the MCC. 
They use two different models of GPU in their experiments. They implement 
an exhaustive algorithm where all the fingerprints are accessed by each query. 
They achieve a speed-up of 29.Ox with the LSS similarity and Ns = 8. Lindoso 
et al. [22] propose an algorithm based on a FPGA for the fingerprint match
ing, achieving a speed-up of 23.7x. Other work based on FPGA is proposed by 
Jiang and Crookes [18], which is to the best of our knowledge the FPGA-based 
algorithm with highest performance, achieving a speed-up of 46.5x.

3 Parallel Computing Algorithms

In this section we show our proposed algorithms for fingerprint identification 
on a multi-core server (Section 3.1) and a Xeon Phi coprocessor (Section 3.2). 
We also explored the use of an indexing method to accelerate the search by 
discarding elements with a pre-processing of the database (Section 4.1).

3.1 Multi-core Algorithm

We take as input parameter the cylinders of each fingerprint, where each cylinder 
is an array of bits. This algorithm is illustrated in Figure 3, where we distributed 
the queries among the threads of the multi-core server. Each thread performs 
the similarity function against all the elements of the database according to 
the similarity of cylinders described in Section 2.1. For avoiding O.S. resource 
conflicts, we execute each thread in an exclusive core.

In our algorithm the data (database and queries) is store in two matrices, 
but for this we keep an index indicating where start and end the cylinder of 
each fingerprint. Thus, we used a heap [19] as auxiliary structure to keep the 
np highest similarities among cylinders. Each thread creates its own heap as a 
private variable. This is required for the global similarity LSS that we used as 
the global and final similarity.

3.2 Xeon Phi Algorithm

Given a fingerprint database of Njjb fingeprints. Let Fingeprints be the matrix 
storing the cylinders of Njjb fingeprints in the database; Queries be the ma
trix storing nu m.queries queries; and ID .thread be the current thread ID and
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Database
N Database

Fig. 3. Illustration of the muti-core algorithm.

numjthreads the total number of threads. We propose an algorithm based on 
MCC for a Xeon Phi coprocessor, which is presented in Algorithm 1. The queries 
are accessed in a round robin manner (line 4 in Algorithm 1) by the thread of 
the Xeon Phi. Each thread calculates a local similarity between its query and 
the fingerprints in the database (line 14), and then the global similarity (line 26) 
with the values stored in its heap of size n, which is the overall similarity score 
between the two fingerprint templates to be compared.

This algorithm does not require any synchronization instructions. The only 
synchronization of the algorithm is carried out implicitly when the pragma of
fload region ends. It is noteworthy that this algorithm has focused on processing 
the queries in batches of size num_queri.es.

4 Experimental Results

In our experiments, we used a multi-core server composed of two Haswell archi
tecture Intel Xeon E5-2620v3 2.4GHz, i.e. 12 hyperthreading cores with 32GB 
in main memory. The coprocessor used in the experiments was an Intel Xeon 
Phi 7120 with 61 cores, supporting up to 4 threads per core, and 16GB of mem
ory. We used all cores in our Xeon Phi algorithm, and 4 threads per core. More 
details are shown in Table 1.

(a) Intel Xeon Phi details.

Table 1. Platforms description.

Coprocessor Intel Xeon Phi 7120P
Cores 61 cores of 1.24 GHz / 4 threads per core

Memory 16GB of memory (bandwidth 352 GB/s)
Cache LI 3.8MB LI (64KB LI per core)
Cache L2 30.5MB L2 (512KB L2 per core)
Compiler icc version 15.0.2, flags: -03 -openmp

(b) Platform for sequential and multi
core versions
Processor 2xlntel Xeon E5-2660v3, 12 cores with HT

15MB Cache, 2.40 GHz, Haswell
Memory 32 GB, 59.7 GB/s

Operative
System

GNU Debian System Linux 
kernel 3.10.0-229.4.2.el7.x86 64

Compiler icc version 15.0.2, flags: -03

num_queri.es
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1: ^pragma offload in(Fingeprints) in(Queries) in(Heaps)
2: {

Algorithm 1 Algorithm in Xeon Phi based on the MCC.

3: ^pragma omp parallel
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13:
14:
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27:

for (i = ID-thread', i < numquer-ies ; i += num-threads') 
for = 0; j < Ndb ; j++)
{

first.cyl = start-cylinders (Fingeprints, j) ; 
size.cyl = size-cylinders (Fingerprints, j) ; 
first_cyl_Q = start_cylinders_query [i] ;

size_cyl_Q = size_cylinders_query[i];
for (k=iirst_cyl_Q; k <first_cyl_Q+size_cyl_Q; fc++) 

for (l=iirst.cyl; I <f irst_cyl+size_cyl; 1++) 
{

_ 1 \\Fzngerprznts[l]XORQuerzes[k] ||
Similarity 1 || Fingerprints [Z] || + || Queries [fc] ||
if (Heap[/D-thread] .sizeO >= n) 
{

if (Heap[/D-thread] .topO < similarity) 
{

Heap[/D-thread] .popO ;
Heap[/D-thread] .push(similarity) ;

}
else

Heap[/D-thread] .push(similarity) ; 
}

}
global-similarity = LSS(Heap[/D-threadY) ;

}
28: }

We used the NIST (National Institute of Standards and Technology) [30] as 
database, which contains 27,000 pairs of segmented 8-bit gray scale fingerprint 
images. We used the first 27,000 impressions as database and the 27,000 second 
impressions as queries. The average number of minutiae is 206.9 with a maximum 
of 610.

Figure 4 shows performance measures between the sequential and multi-core 
method. Figure 4(a) shows the speed-up of the multi-core algorithm, and Figure 
4(b) shows the quantity of cylinders comparison operations performed per sec
ond. Both experiments in Figure 4 execute one thread in one exclusive core, and 
for the label 24 (HT) we executed two threads per core using the hyperthreading 
property of the processors. We observe a good scaling behavior when a thread 
is executed in an exclusive core, but also with 24 threads (taking into account 
the shared resources for hyperthreading cores).

Figure 5 shows the speed-up of the sequential and multi-core algorithms with 
12 and 24 HT threads against the algorithm in Xeon Phi. It should be highlighted 
each core in Xeon Phi supports up to 4 threads executed simultaneously. Our 
algorithm in Xeon Phi reaches 97.51x of speed-up because of the good use of 
cache when threads executed in the same core access to the same data ([28]). 
This behavior occurs when threads processing different queries must access to 
the same elements of the database.

There are different previous works covering the fingerprint identification in 
the coprocessors GPU and FPGA, which were described in Section 2.3. We 
compare our results to these previous state-of-the-art algorithms in the Table
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1 2 4 8 12 24(HT)

Number of Threads

(a) Speed-up of the multi-core algorithm

Multi-core algorithm —

35000
32500
30000
27500
25000
22500
20000
17500
15000
12500
10000
7500
5000
2500

0
12 24(HT)

Number of Threads

(b) Quantity of Cilinders comparison per 
second

Fig. 4. Performance measures between the Sequential and multi-core version. 
HT=Hyperthreading.

Fig. 5. Speed-up between of the multi-core and Xeon Phi version. Values obtained over 
the sequential algorithm. HT=Hyperthreading.

2. It should be noticed that FPG-based approaches use different databases and 
they achieve a speed-up up to 46.5x. Our algorithm in Xeon Phi achieves a 
competitive speed-up, showing that a Xeon Phi coprocessor can be used for 
fingerprint matching and specifically for the MCC algorithm.

4.1 Indexing Algorithm for MCC

In recent years, in the area of similarity search, many indexing approaches have 
been proposed ([10]). The objective of these indexes is to avoid distance cal
culations between the query and each of the elements of the database. This is 
performed by discarding elements using the triangle inequality property of a 
metric space. In this work, we implemented the List of Cluster (LC) [9] index
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Table 2. Comparison with state-of-the-art algorithms on different parallel platforms.

Algorithm Parallel Platform Database Speed-up
Multi-core algorithm 24 (HT) threads NIST Special

Database 14
12.99x

Xeon Phi algorithm Xeon Phi 7120 NIST Special
Database 14

97.51x

GPU algorithm with LSS in [15] NVIDIA GeForce GTX 680 NIST Special
Database 14

29.Ox

GPU algorithm with LSS in [15] NVIDIA Tesla M2090 NIST Special
Database 14

24.9x

FPGA method in [18] FPGA Xilinx Virtex-E 10,000 fin
gerprints 
randomly 
generated

46.5x

FPGA method in [22] FPGA Xilinx Virtex-4 LX 56 fingerprints 23.7x

to be used with the MCC algorithm, and trying of discarding fingerprints of the 
database.

We used an adaptation of the cylinder similarity function to be able of using 
the LC index, which requires that the data (X) and similarity function (d) be a 
metric space [31]. This means that d must hold the following properties on X: 
(1) strict positiveness (d(x,y) > 0 and if d(x, y) = 0 then x = y), (2) symmetry 
(d(x, y) = d(y, x)), and the triangle inequality (d(x, z) < d(x, y) + d(y, z)).

We used the similarity function shown in [7], where given two fingerprints 
Fl, F-2, and S\ Sq_ be the corresponding sets of n-dimensional binary vectors, a 
similarity measure between Fi and Id can be defined as follows:

s«m(Fi, F2) =
EseS1 maxSjEs2{H(.s, s^}

|N| (1)

where |Si| is the cardinality of set S\, and H is a normalized similarity measure 
between two binary vectors, based on the Hamming distance (d#), defined as 
follows: 

F(a,&) =
dim

dtf(a, b)
(2)

where dim is the dimension of the binary vectors, and p is a parameter controlling 
the shape of the similarity function (we set p = 30 for the experiments).

We selected the LC index because: (1) it has been previously used with 
parallel platforms ([2, 24,13]) (2) they hold their indexes in dense matrices which 
are very convenient data structures for mapping algorithms onto Xeon Phi. This 
index can be implemented dividing the space in two different ways: taking a 
fixed radius for each partition or using a fixed size. To ensure good load balance 
in a parallel platform, we consider partitions with a fixed size of K elements, 
thus the cluster radius rc with the center C is the maximum distance between 
its center and its Kth nearest element.

We did not achieve positive results using the LC index, obtaining execution 
times higher than the exhaustive approaches. This is because this index was 
not able to discard elements with the elements of the MCC algorithm. We can
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Radii

(a) Percentage of Discarded Clusters

Fig. 6. Average values using the List of Cluster index.

Radii

(b) Quantity of Retrieved Elements

see in Figure 6(a) the percentage (on average) of discarded elements when the 
radius of the query is increased, and Figure 6(b) shows the number of retrieved 
elements when the radius of the query is increased. We observe that when the 
radius is large enough to retrieve elements, the LC is not able to discard any 
elements. This phenomenon has been observed before, and it is named as curse 
of dimensionality ([3]), where the intrinsic dimensionality ([10]) is high enough 
to avoid discarding, and the distance histogram of the elements is more con
centrated when the dimension grows. Despite the fact that we did not achieve 
a good result in performance, we decided to add this section to conclude that 
a metric index like the LC is not efficient with this algorithm, because of the 
nature of the data.

5 Conclusions

In this work, we have proposed and implemented algorithms for fingerprint iden
tification on two different kinds of parallel platforms: a multi-core server and a 
Xeon Phi coprocessor.

Our algorithms are based on heaps and exhaustive search, but we also ex
plored an indexing approach using the List of Cluster index. This index did not 
reach a good performance, mainly because the nature of the vectors did not 
allow discarding of elements, which is the purpose of the index. This is because 
the intrinsic dimension of the space is high and it is affected by the well known 
curse of dimensionality.

Our algorithms achieve up to 97.51x of speed-up, outperforming previous 
state-of-the-art approaches in GPU and FPGA. Our results show that the com
putation need of the MCC algorithm can be covered and accelerated using a 
Xeon Phi. This coprocessor has the advantage of a reduced cost compared to 
a conventional multi-core server, and also a lower energy consumption. To the 
best of our knowledge, this is the first work for fingerprint identification using a 
Xeon Phi coprocessor.
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