128 research outputs found

    Prioritarian rates of return to antipoverty transfers

    Get PDF
    A growing impact evaluation literature on antipoverty transfer programmes in low- and middle-income countries measures changes in utilitarian terms, at their unit value. The paper argues that valuing antipoverty transfers is more appropriately done within a framework of prioritarian social welfare functions, as the very presence of these programmes indicates that polities place a greater value on gains and losses among the disadvantaged. The paper applies this framework to the Senior Citizen Grant in Uganda, including survey and experimental work throwing light on social preferences for redistribution. It finds that default utilitarian valuation significantly underestimates the social value of transfer programmes

    Final Results of a Randomized, Phase III Study of Rituximab With or Without Idelalisib Followed by Open-Label Idelalisib in Patients With Relapsed Chronic Lymphocytic Leukemia

    Get PDF
    PURPOSE A randomized, double-blind, phase III study of idelalisib (IDELA) plus rituximab versus placebo plus rituximab in patients with relapsed chronic lymphocytic leukemia (CLL) was terminated early because of superior efficacy of the IDELA-plus-rituximab (IDELA/R) arm. Patients in either arm could then enroll in an extension study to receive IDELA monotherapy. Here, we report the long-term efficacy and safety data for IDELA-treated patients across the primary and extension studies. PATIENTS AND METHODS Patients were randomly assigned to receive rituximab in combination with either IDELA 150 mg twice daily (IDELA/R; n = 110) or placebo (placebo/R; n = 110). Key end points were progression-free survival (PFS), overall response rate (ORR), overall survival (OS), and safety. RESULTS The long-term efficacy and safety of treatment with IDELA was assessed in 110 patients who received at least one dose of IDELA in the primary study, 75 of whom enrolled in the extension study. The IDELA/R-to-IDELA group had a median PFS of 20.3 months (95% CI, 17.3 to 26.3 months) after a median follow-up time of 18 months (range, 0.3 to 67.6 months). The ORR was 85.5% (94 of 110 patients; n = 1 complete response). The median OS was 40.6 months (95% CI, 28.5 to 57.3 months) and 34.6 months (95% CI, 16.0 months to not reached) for patients randomly assigned to the IDELA/R and placebo/R groups, respectively. Prolonged exposure to IDELA increased the incidence of all-grade, grade 2, and grade 3 or greater diarrhea (46.4%, 17.3%, and 16.4%, respectively), all-grade and grade 3 or greater colitis (10.9% and 8.2%, respectively) and all-grade and grade 3 or greater pneumonitis (10.0% and 6.4%, respectively) but did not increase the incidence of elevated hepatic aminotransferases. CONCLUSION IDELA improved PFS and OS compared with rituximab alone in patients with relapsed CLL. Long-term IDELA was effective and had an expected safety profile. No new IDELA-related adverse events were identified with longer exposure

    Genomic Islands of Speciation in Anopheles gambiae

    Get PDF
    The African malaria mosquito, Anopheles gambiae sensu stricto (A. gambiae), provides a unique opportunity to study the evolution of reproductive isolation because it is divided into two sympatric, partially isolated subtaxa known as M form and S form. With the annotated genome of this species now available, high-throughput techniques can be applied to locate and characterize the genomic regions contributing to reproductive isolation. In order to quantify patterns of differentiation within A. gambiae, we hybridized population samples of genomic DNA from each form to Affymetrix GeneChip microarrays. We found that three regions, together encompassing less than 2.8 Mb, are the only locations where the M and S forms are significantly differentiated. Two of these regions are adjacent to centromeres, on Chromosomes 2L and X, and contain 50 and 12 predicted genes, respectively. Sequenced loci in these regions contain fixed differences between forms and no shared polymorphisms, while no fixed differences were found at nearby control loci. The third region, on Chromosome 2R, contains only five predicted genes; fixed differences in this region were also verified by direct sequencing. These “speciation islands” remain differentiated despite considerable gene flow, and are therefore expected to contain the genes responsible for reproductive isolation. Much effort has recently been applied to locating the genes and genetic changes responsible for reproductive isolation between species. Though much can be inferred about speciation by studying taxa that have diverged for millions of years, studying differentiation between taxa that are in the early stages of isolation will lead to a clearer view of the number and size of regions involved in the genetics of speciation. Despite appreciable levels of gene flow between the M and S forms of A. gambiae, we were able to isolate three small regions of differentiation where genes responsible for ecological and behavioral isolation are likely to be located. We expect reproductive isolation to be due to changes at a small number of loci, as these regions together contain only 67 predicted genes. Concentrating future mapping experiments on these regions should reveal the genes responsible for reproductive isolation between forms

    Genome-Wide Analysis of Targets for Post-Transcriptional Regulation by Rsm Proteins in Pseudomonas putida

    Get PDF
    © Copyright © 2021 Huertas-Rosales, Romero, Chan, Hong, Cåmara, Heeb, Barrientos-Moreno, Molina-Henares, Travieso, Ramos-Gonzålez and Espinosa-Urgel. Post-transcriptional regulation is an important step in the control of bacterial gene expression in response to environmental and cellular signals. Pseudomonas putida KT2440 harbors three known members of the CsrA/RsmA family of post-transcriptional regulators: RsmA, RsmE and RsmI. We have carried out a global analysis to identify RNA sequences bound in vivo by each of these proteins. Affinity purification and sequencing of RNA molecules associated with Rsm proteins were used to discover direct binding targets, corresponding to 437 unique RNA molecules, 75 of them being common to the three proteins. Relevant targets include genes encoding proteins involved in signal transduction and regulation, metabolism, transport and secretion, stress responses, and the turnover of the intracellular second messenger c-di-GMP. To our knowledge, this is the first combined global analysis in a bacterium harboring three Rsm homologs. It offers a broad overview of the network of processes subjected to this type of regulation and opens the way to define what are the sequence and structure determinants that define common or differential recognition of specific RNA molecules by these proteins

    Targeting BTK with Ibrutinib in Relapsed or Refractory Mantle-Cell Lymphoma – Results of an International, Multicenter, Phase 2 Study of Ibrutinib (PCI-32765) – EHA Encore

    Get PDF
    Bruton's tyrosine kinase (BTK) is a central mediator of B-cell receptor (BCR) signaling essential for normal B-cell development. Ibrutinib is an oral BTK inhibitor that induces apoptosis and inhibits migration and adhesion of malignant B-cells. Updated results of this international, multicenter, phase 2 study of single agent ibrutinib in relapsed or refractory MCL will be presented.Ibrutinib 560mg PO QD was administered continuously until disease progression. Tumor response was assessed every 2 cycles (one cycle=28 days). The study enrolled 115 patients (65 bortezomib-naĂŻve, 50 bortezomib-exposed); 111 patients were treated; 110 were evaluable for response. Baseline characteristics included: median age 68 years, time since diagnosis 42 months, number of prior treatments 3; bulky disease (>10cm) 13%, prior stem cell transplant 10%, high risk MIPI 49%.Median time on treatment was 9.2 months; 53% of patients remain on therapy. Median PFS was 13.9 months and DOR has not yet been reached. Responses increased with longer treatment: comparing to previous data described at ASH 2011, the CR rate increased from 16% to 39%, and the ORR increased from 69% to 75%

    Effects of Inversions on Within- and Between-Species Recombination and Divergence

    Get PDF
    Chromosomal inversions disrupt recombination in heterozygotes by both reducing crossing-over within inverted regions and increasing it elsewhere in the genome. The reduction of recombination in inverted regions facilitates the maintenance of hybridizing species, as outlined by various models of chromosomal speciation. We present a comprehensive comparison of the effects of inversions on recombination rates and on nucleotide divergence. Within an inversion differentiating Drosophila pseudoobscura and Drosophila persimilis, we detected one double recombinant among 9,739 progeny from F1 hybrids screened, consistent with published double-crossover frequencies observed within species. Despite similar rates of exchange within and between species, we found no sequence-based evidence of ongoing gene exchange between species within this inversion, but significant exchange was inferred within species. We also observed greater differentiation at regions near inversion breakpoints between species versus within species. Moreover, we observed strong “interchromosomal effect” (higher recombination in inversion heterozygotes between species) with up to 9-fold higher recombination rates along collinear segments of chromosome two in hybrids. Further, we observed that regions most susceptible to changes in recombination rates corresponded to regions with lower recombination rates in homokaryotypes. Finally, we showed that interspecies nucleotide divergence is lower in regions with greater increases in recombination rate, potentially resulting from greater interspecies exchange. Overall, we have identified several similarities and differences between inversions segregating within versus between species in their effects on recombination and divergence. We conclude that these differences are most likely due to lower frequency of heterokaryotypes and to fitness consequences from the accumulation of various incompatibilities between species. Additionally, we have identified possible effects of inversions on interspecies gene exchange that had not been considered previously

    Genome-wide fine-scale recombination rate variation in Drosophila melanogaster

    Get PDF
    Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and diversity
    • 

    corecore