15 research outputs found

    Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12·2 million (95% UI 11·0–13·6) incident cases of stroke, 101 million (93·2–111) prevalent cases of stroke, 143 million (133–153) DALYs due to stroke, and 6·55 million (6·00–7·02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11·6% [10·8–12·2] of total deaths) and the third-leading cause of death and disability combined (5·7% [5·1–6·2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70·0% (67·0–73·0), prevalent strokes increased by 85·0% (83·0–88·0), deaths from stroke increased by 43·0% (31·0–55·0), and DALYs due to stroke increased by 32·0% (22·0–42·0). During the same period, age-standardised rates of stroke incidence decreased by 17·0% (15·0–18·0), mortality decreased by 36·0% (31·0–42·0), prevalence decreased by 6·0% (5·0–7·0), and DALYs decreased by 36·0% (31·0–42·0). However, among people younger than 70 years, prevalence rates increased by 22·0% (21·0–24·0) and incidence rates increased by 15·0% (12·0–18·0). In 2019, the age-standardised stroke-related mortality rate was 3·6 (3·5–3·8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3·7 (3·5–3·9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62·4% of all incident strokes in 2019 (7·63 million [6·57–8·96]), while intracerebral haemorrhage constituted 27·9% (3·41 million [2·97–3·91]) and subarachnoid haemorrhage constituted 9·7% (1·18 million [1·01–1·39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79·6 million [67·7–90·8] DALYs or 55·5% [48·2–62·0] of total stroke DALYs), high body-mass index (34·9 million [22·3–48·6] DALYs or 24·3% [15·7–33·2]), high fasting plasma glucose (28·9 million [19·8–41·5] DALYs or 20·2% [13·8–29·1]), ambient particulate matter pollution (28·7 million [23·4–33·4] DALYs or 20·1% [16·6–23·0]), and smoking (25·3 million [22·6–28·2] DALYs or 17·6% [16·4–19·0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.publishedVersio

    Sleep/wake cycle in individuals with type 1 diabetes mellitus.

    No full text
    O objetivo do presente estudo foi avaliar possíveis relações entre o diabetes mellitus tipo 1 (DM1) e controle glicêmico, e o ciclo vigília/sono. Participaram 18 voluntários com DM1 (idade: 26,3±5,1), sem complicações, não obesos, sem alterações no sono; e 9 no grupo controle (idade: 28,8±5,3). Os dados foram coletados através de: diário de sono e de glicemia, actímetria (Tempatilumi), polissonografia, 6-sulfatoximelatonina, questionário de Epworth, e sensor de glicose durante a polissonografia nos DM1. A associação entre controle glicêmico e o ciclo vigília/sono foi evidenciada. A duração inadequada, a baixa qualidade, a fragmentação do sono e a secreção reduzida de melatonina, possivelmente, favoreceram um pior controle glicêmico em DM1. Por outro lado, indivíduos DM1, com melhor controle glicêmico, podem se beneficiar de maior secreção de melatonina noturna e menor fragmentação e latência do sono. O controle mais adequado, potencialmente, regulariza o ciclo vigília/sono e previne ou retarda o desenvolvimento de complicações crônicas.The aim of the present study was to evaluate the association of type 1 diabetes mellitus (T1DM) and glycemic control with the sleep/wake cycle. Eighteen T1DM volunteers and 9 control subjects, non-obese, without chronic complications, and no sleep disorders participated. Data were collected with sleep and glycemia log, actigraphy (Tempatilumi), polysomnography, 6-sulphatoxymelatonin, Epworth questionnaire, and glucose sensor during the polysomnography night for T1DM. The association between glycemic control and sleep/wake cycle was observed. The inadequate duration, poor quality, and fragmented sleep besides the reduced melatonin secretion possibly favored a worse glycemic control in T1DM. On the other hand, we understand that T1DM individuals with better glycemic control may benefit from increased melatonin secretion and less sleep fragmentation and latency. Therefore, a better glycemic control potentially regulates the sleep/wake cycle and prevents or delays the development of chronic complications

    Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12.2 million (95% UI 11.0-13.6) incident cases of stroke, 101 million (93.2-111) prevalent cases of stroke, 143 million (133-153) DALYs due to stroke, and 6.55 million (6.00-7.02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11.6% 10.8-12.2] of total deaths) and the third-leading cause of death and disability combined (5.7% 5.1-6.2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70.0% (67.0-73.0), prevalent strokes increased by 85.0% (83.0-88.0), deaths from stroke increased by 43.0% (31.0-55.0), and DALYs due to stroke increased by 32.0% (22.0-42.0). During the same period, age-standardised rates of stroke incidence decreased by 17.0% (15.0-18.0), mortality decreased by 36.0% (31.0-42.0), prevalence decreased by 6.0% (5.0-7.0), and DALYs decreased by 36.0% (31.0-42.0). However, among people younger than 70 years, prevalence rates increased by 22.0% (21.0-24.0) and incidence rates increased by 15.0% (12.0-18.0). In 2019, the age-standardised stroke-related mortality rate was 3.6 (3.5-3.8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3.7 (3.5-3.9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62.4% of all incident strokes in 2019 (7.63 million 6.57-8.96]), while intracerebral haemorrhage constituted 27.9% (3.41 million 2.97-3.91]) and subarachnoid haemorrhage constituted 9.7% (1.18 million 1.01-1.39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79.6 million 67.7-90.8] DALYs or 55.5% 48.2-62.0] of total stroke DALYs), high body-mass index (34.9 million 22.3-48.6] DALYs or 24.3% 15.7-33.2]), high fasting plasma glucose (28.9 million 19.8-41.5] DALYs or 20.2% 13.8-29.1]), ambient particulate matter pollution (28.7 million 23.4-33.4] DALYs or 20.1% 16.6-23.0]), and smoking (25.3 million 22.6-28.2] DALYs or 17.6% 16.4-19.0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries

    Peripheral body temperature impairment in individuals with type 1 diabetes mellitus

    No full text
    Objective: The aim of the present study was to evaluate the peripheral temperature rhythmicity and control in individuals with type 1 diabetes mellitus. Methods: Twelve non-obese adults (20-40 years old) with type 1 diabetes mellitus (T1D) and eight control individuals, matched for age and BMI, wore a wrist temperature recorder for 10 consecutive days. Recorded data were aggregated to calculate M10 (ten hours of highest temperature) and L5 (five hours of lowest temperature) of wrist temperature values for both groups. Results: Mean wrist temperature and M10 were not different when comparing the groups. The wrist temperature amplitude was reduced in the T1D group (p=0.039), due to a higher L5 (p=0.038). Discussion: While the higher L5 observed in T1D could be explained by less efficient heat dissipation, the amplitude flattening coincides with that observed in elderly

    Meaningful Engagement of People Living With Noncommunicable Diseases: Challenges and Opportunities

    No full text
    Meaningful engagement of people living with health conditions means actively incorporating them in all stages of health decision-making. Despite efforts by global health agencies and governments towards meaningful engagement of people living with noncommunicable diseases (PLWNCDs), many opportunities for participation are tokenistic. PLWNCDs often report feeling excluded from technical discussions and outnumbered by other stakeholders. Participation in decision-making is a human right, and PLWNCDs must continue advocating for a “nothing about us without us” approach. They should be respected as decision-makers with voice, agency, voting power, rights, and duties. This article highlights four key themes: (1) both tokenistic participation and exclusion of PLWNCDs from technical discussions are still common; (2) the “patient” label implies passivity and can perpetuate limited participation, whereas the identifier of PLWNCDs connotes valuable knowledge associated with lived experience; (3) meaningful participation of PLWNCDs in health decision-making processes should be considered a human right; (4) PLWNCD should be empowered to continue to advocate for inclusion and be respected as decision-makers

    Sleep and glycemic control in type 1 diabetes

    No full text
    Objective Our aim in the present study was to elucidate how type 1 diabetes mellitus (T1DM) and sleep parameters interact, which was rarely evaluated up to the moment. Materials and methods Eighteen T1DM subjects without chronic complications, and 9 control subjects, matched for age and BMI, were studied. The following instruments used to evaluate sleep: the Epworth Sleepiness Scale, sleep diaries, actimeters, and polysomnography in a Sleep Lab. Glycemic control in T1DM individuals was evaluated through: A1C, home fingertip glucometer for 10 days (concomitant with the sleep diary and actimeter), and CGM or concomitant with continuous glucose monitoring (during the polysomnography night). Results Comparing with the control group, individuals with diabetes presented more pronounced sleep extension from weekdays to weekends than control subjects (p = 0.0303). Among T1DM, glycemic variability (SD) was positively correlated with sleep latency (r = 0.6525, p = 0.0033); full awakening index and arousal index were positively correlated with A1C (r = 0.6544, p = 0.0081; and r = 0.5680, p = 0.0272, respectively); and mean glycemia values were negatively correlated with sleep quality in T1DM individuals with better glycemic control (mean glycemia < 154 mg/dL). Conclusion Our results support the hypothesis of an interaction between sleep parameters and T1DM, where the glycemic control plays an important role. More studies are needed to unveil the mechanisms behind this interaction, which may allow, in the future, clinicians and educators to consider sleep in the effort of regulating glycemic control. Arch Endocrinol Metab. 2015;59(1):71-
    corecore