85 research outputs found

    Standard (8 weeks) vs long (12 weeks) timing to minimally-invasive surgery after NeoAdjuvant Chemoradiotherapy for rectal cancer: A multicenter randomized controlled parallel group trial (TiMiSNAR)

    Get PDF
    Background: The optimal timing of surgery in relation to chemoradiation is still controversial. Retrospective analysis has demonstrated in the recent decades that the regression of adenocarcinoma can be slow and not complete until after several months. More recently, increasing pathologic Complete Response rates have been demonstrated to be correlated with longer time interval. The purpose of the trial is to demonstrate if delayed timing of surgery after neoadjuvant chemoradiotherapy actually affects pathologic Complete Response and reflects on disease-free survival and overall survival rather than standard timing. Methods: The trial is a multicenter, prospective, randomized controlled, unblinded, parallel-group trial comparing standard and delayed surgery after neoadjuvant chemoradiotherapy for the curative treatment of rectal cancer. Three-hundred and forty patients will be randomized on an equal basis to either robotic-assisted/standard laparoscopic rectal cancer surgery after 8 weeks or robotic-assisted/standard laparoscopic rectal cancer surgery after 12 weeks. Discussion: To date, it is well-know that pathologic Complete Response is associated with excellent prognosis and an overall survival of 90%. In the Lyon trial the rate of pCR or near pathologic Complete Response increased from 10.3 to 26% and in retrospective studies the increase rate was about 23-30%. These results may be explained on the relationship between radiation therapy and tumor regression: DNA damage occurs during irradiation, but cellular lysis occurs within the next weeks. Study results, whether confirmed that performing surgery after 12 weeks from neoadjuvant treatment is advantageous from a technical and oncological point of view, may change the current pathway of the treatment in those patient suffering from rectal cancer. Trial registration: ClinicalTrials.gov NCT3465982

    Standard (8 weeks) vs long (12 weeks) timing to minimally-invasive surgery after NeoAdjuvant Chemoradiotherapy for rectal cancer: a multicenter randomized controlled parallel group trial (TiMiSNAR)

    Get PDF
    BACKGROUND: The optimal timing of surgery in relation to chemoradiation is still controversial. Retrospective analysis has demonstrated in the recent decades that the regression of adenocarcinoma can be slow and not complete until after several months. More recently, increasing pathologic Complete Response rates have been demonstrated to be correlated with longer time interval. The purpose of the trial is to demonstrate if delayed timing of surgery after neoadjuvant chemoradiotherapy actually affects pathologic Complete Response and reflects on disease-free survival and overall survival rather than standard timing. METHODS: The trial is a multicenter, prospective, randomized controlled, unblinded, parallel-group trial comparing standard and delayed surgery after neoadjuvant chemoradiotherapy for the curative treatment of rectal cancer. Three-hundred and forty patients will be randomized on an equal basis to either robotic-assisted/standard laparoscopic rectal cancer surgery after 8\u2009weeks or robotic-assisted/standard laparoscopic rectal cancer surgery after 12\u2009weeks. DISCUSSION: To date, it is well-know that pathologic Complete Response is associated with excellent prognosis and an overall survival of 90%. In the Lyon trial the rate of pCR or near pathologic Complete Response increased from 10.3 to 26% and in retrospective studies the increase rate was about 23-30%. These results may be explained on the relationship between radiation therapy and tumor regression: DNA damage occurs during irradiation, but cellular lysis occurs within the next weeks. Study results, whether confirmed that performing surgery after 12\u2009weeks from neoadjuvant treatment is advantageous from a technical and oncological point of view, may change the current pathway of the treatment in those patient suffering from rectal cancer

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271.

    Get PDF
    The question of whether tumorigenic cancer stem cells exist in human melanomas has arisen in the last few years. Here we show that in melanomas, tumour stem cells (MTSCs, for melanoma tumour stem cells) can be isolated prospectively as a highly enriched CD271(+) MTSC population using a process that maximizes viable cell transplantation. The tumours sampled in this study were taken from a broad spectrum of sites and stages. High-viability cells isolated by fluorescence-activated cell sorting and re-suspended in a matrigel vehicle were implanted into T-, B- and natural-killer-deficient Rag2(-/-)gammac(-/-) mice. The CD271(+) subset of cells was the tumour-initiating population in 90% (nine out of ten) of melanomas tested. Transplantation of isolated CD271(+) melanoma cells into engrafted human skin or bone in Rag2(-/-)gammac(-/-) mice resulted in melanoma; however, melanoma did not develop after transplantation of isolated CD271(-) cells. We also show that in mice, tumours derived from transplanted human CD271(+) melanoma cells were capable of metastatsis in vivo. CD271(+) melanoma cells lacked expression of TYR, MART1 and MAGE in 86%, 69% and 68% of melanoma patients, respectively, which helps to explain why T-cell therapies directed at these antigens usually result in only temporary tumour shrinkage

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    LEONTOPODIUM ALPINUM CASS. ’HELVETIA’, A NEW HYBRID EDELWEISS

    No full text
    Edelweiss (Leontopodium alpinum Cass. Asteraceae) is the most emblematic plant of the Alps. Wild collections is strictly forbidden or limited. Since natural populations show a high degree of morphological variability, a breeding program was carried out to obtain a high quality, productive and homogenous variety for cultivation. Breeding was facilitated by a particular reproduction system. Edelweiss “flowers” are in reality a capitulum of capitula: a star-shape involucrum of bracts surrounds 5-10 capitula (inflorescences containing numerous tiny flowers) clustered in one capitulum. As a rule, an Edelweiss plant contains both hermaphrodite and female flowers (gynomonoecy). However, a few rare occurrences of hermaphrodite only and female only individuals (gynodioecy) have been observed. We used this biological feature to create hybrid clones from five female only plants (mother-plants) pollinated by four hermaphrodite plants (father-plants). We obtained 19 hybrids and compared them to three selected hermaphrodite and two wild populations from the Swiss Alps. Hybrid plants turned out to be much more homogenous, with a higher average dry weight as well as a higher level of leontopodic acid, a recently discovered antioxidant with DNA protecting properties. The most interesting Edelweiss hybrid was named ’Helvetia’ after the Latin name of Switzerland. ’Helvetia’ is now successfully cultivated in mountainous regions of Switzerland and demand for Edelweiss ’Helvetia’ extracts by food (beverage, liquor, chocolate, etc.) and cosmetic (sunscreen, anti-aging lotions, etc.) companies has greatly increased in recent years. Acknowledgements: DSM/Pentapharm/Alpaflor, Valplantes, Weleda and Ricola for their logistic and financial support; Charly Rey for his helpful collaboration

    Optimization of an Optical Magnetic Twisting Cytometry system for the study of cell mechanics.

    No full text
    none6noneM Pastena;M Baroffio;C Folli;A Pedotti;V Brusasco;R L DellacaPastena, M.; Baroffio, Michele; Folli, C.; Pedotti, A.; Brusasco, Vito; Dellaca, R. L

    A voltage-dependent proton current in cultured human skeletal muscle myotubes.

    No full text
    1. A voltage-dependent proton current, IH, was studied in cultured myotubes obtained from biopsies of human muscle, using whole-cell recording with the patch-clamp technique. 2. With a pHo of 8.0 and a calculated pHi of 6.3, IH was activated at voltages more depolarized than -50 mV and its conductance reached its maximum value at voltages more depolarized than +10 mV. 3. Studies of the reversal potential of IH during substitution of K+, Na+, Ca2+, Cl-, Cs+ and H+ in the extracellular solution indicated that protons were the major charge carriers of IH. 4. IH was also activated during a voltage step to +22 mV with a pHo of 7.3 and a calculated pHi of 7.3. 5. Acidification of the extracellular solution led to a shift towards depolarized voltages of the conductance-voltage relationship. 6. Stationary noise analysis of IH suggested that the elementary event underlying IH was very small with a conductance of less than 0.09 pS. 7. Extracellular application of various divalent cations blocked IH. The block by divalent cations was voltage dependent, being more efficient at hyperpolarized than at depolarized voltages. For Cd2+, the Michaelis-Menten constant (Km) for the block was 0.6 microM at -28 mV and 10.4 microM at +12 mV. 8. Ca2+ was a less efficient blocker than Cd2+ but could block IH at physiological concentrations (the Km values for the block were 0.9 mM at -38 mV and 7.3 mM at -8 mV). 9. The voltage-dependent properties of IH and its ability to be affected by pH and Ca2+ suggest that IH might be used by skeletal muscle cells to extrude protons during action potentials. 10. A model of IH activation suggests that under extreme conditions, the conductance of IH can reach 40% of its maximum value after less than ten action potentials
    corecore