45 research outputs found
Use of motion estimation algorithms for improved flux measurements using SO<inf>2</inf> cameras
SO2 cameras are rapidly gaining popularity as a tool for monitoring SO2 emissions from volcanoes. Several different SO2 camera systems have been developed with varying patterns of image acquisition in space, time and wavelength. Despite this diversity, there are two steps common to the workflows of most of these systems; aligning images of different wavelengths to calculate apparent absorbance and estimating plume transport speeds, both of which can be achieved using motion estimation algorithms. Here we present two such algorithms, a Dual Tree Complex Wavelet Transform-based algorithm and the Farneback Optical Flow algorithm. We assess their accuracy using a a synthetic dataset created using the numeric cloud-resolving model ATHAM, and then apply them to real world data from Villarrica volcano. Both algorithms are found to perform well and the ATHAM simulations offer useful datasets for benchmarking and validating future algorithms.RCUK, OtherThis is the final published version of the article "Use of Motion Estimation Algorithms for Improved Flux Measurements Using SO 2 Cameras" which is also available from Elsevier at http://www.sciencedirect.com/science/article/pii/S0377027314002807
A multidisciplinary study of the final episode of the Manda Hararo dyke sequence, Ethiopia, and implications for trends in volcanism during the rifting cycle
The sequence of dyke intrusions between 2005 and 2010 in the Manda Hararo rift segment, Ethiopia, provided an opportunity to test conceptual models of continental rifting. Based on trends up to dyke 13 in the sequence, it was anticipated that, should magma supply continue, dykes would shorten in length and eruptions would increase in size and decrease in distance from the segment centre as extensional stress was progressively released. In this paper we revisit these predictions by presenting a comprehensive overview of the May 2010 dyke and fissure eruption, the 14th and last in the sequence, from InSAR, seismicity, satellite thermal data, ultra violet SO2 retrievals, and multiple LiDAR surveys. We find the dyke is longer than other eruptive dykes in the sequence, propagating in two directions from the segment centre, but otherwise fairly typical in terms of opening, propagation speed and geodetic and seismic moment. However, though the eruption is located closer to the segment centre, it is much smaller than previous events. We interpret this as indicating that either the Manda Hararo rifting event was magma limited, or that extensional stress varies north and south of the segment centre
Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; implications for the volatile budget of the central volcanic zone
Emission of volcanic gas is thought to be the dominant process by which volatiles transit from the deep earth to the atmosphere. Volcanic gas emissions, remain poorly constrained, and volcanoes of Peru are entirely absent from the current global dataset. In Peru, Sabancaya and Ubinas volcanoes are by far the largest sources of volcanic gas. Here, we report the first measurements of the compositions and fluxes of volcanic gases emitted from these volcanoes. The measurements were acquired in November 2015. We determined an average SO2 flux of 15.3 ± 2.3 kg s− 1 (1325-ton day− 1) at Sabancaya and of 11.4 ± 3.9 kg s− 1 (988-ton day− 1) at Ubinas using scanning ultraviolet spectroscopy and dual UV camera systems. In-situ Multi-GAS analyses yield molar proportions of H2O, CO2, SO2, H2S and H2 gases of 73, 15, 10 1.15 and 0.15 mol% at Sabancaya and of 96, 2.2, 1.2 and 0.05 mol% for H2O, CO2, SO2 and H2S at Ubinas. Together, these data imply cumulative fluxes for both volcanoes of 282, 30, 27, 1.2 and 0.01 kg s− 1 of H2O, CO2, SO2, H2S and H2 respectively. Sabancaya and Ubinas volcanoes together contribute about 60% of the total CO2 emissions from the Central Volcanic zone, and dominate by far the total revised volatile budget of the entire Central Volcanic Zone of the Andes
Insights into volcanic hazards and plume chemistry from multi-parameter observations: the eruptions of Fimmvörðuháls and Eyjafjallajökull (2010) and Holuhraun (2014–2015)
The eruptions of Eyjafjallajökull volcano in 2010 (including its initial effusive phase at Fimmvörðuháls and its later explosive phase from the central volcano) and Bárðarbunga volcano in 2014–2015 (at Holuhraun) were widely reported. Here, we report on complementary, interdisciplinary observations made of the eruptive gases and lavas that shed light on the processes and atmospheric impacts of the eruptions, and afford an intercomparison of contrasting eruptive styles and hazards. We find that (i) consistent with other authors, there are substantial differences in the gas composition between the eruptions; namely that the deeper stored Eyjafjallajökull magmas led to greater enrichment in Cl relative to S; (ii) lava field SO2 degassing was measured to be 5–20% of the total emissions during Holuhraun, and the lava emissions were enriched in Cl at both fissure eruptions—particularly Fimmvörðuháls; and (iii) BrO is produced in Icelandic plumes in spite of the low UV levels
Structural Analysis of the Western Afar Margin, East Africa: Evidence for Multiphase Rotational Rifting
The Afar region in East Africa represents a key location to study continental breakup. We present an integrated structural analysis of the Western Afar Margin (WAM) aiming to better understand rifted margin development and the role of plate rotation during rifting. New structural information from remote sensing, fieldwork, and earthquake data sets reveals that the N-S striking WAM is still actively deforming and is characterized by NNW-SSE normal faulting as well as a series of marginal grabens. Seismicity distribution analysis and the first-ever borehole-calibrated sections of this developing passive margin show recent slip concentrated along antithetic faults. Tectonic stress parameters derived from earthquake focal mechanisms reveal different extension directions along the WAM (82°N), in Afar (66°N) and in the Main Ethiopian Rift (108°N). Fault slip analysis along the WAM yields the same extension direction. Combined with GPS data, this shows that current tectonics in Afar is dominated by the local rotation of the Danakil Block, considered to have occurred since 11 Ma. Earlier stages of Afar development (since 31–25 Ma) were most likely related to the large-scale rotation of the Arabian plate. Various authors have proposed scenarios for the evolution of the WAM. Any complete model should consider, among other factors, the multiphase tectonic history and antithetic fault activity of the margin. The findings of this study are not only relevant for a better understanding of the WAM but also provide insights into the role of multiphase rotational extension during rifting and passive margin formation in general.</p
Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; implications for the volatile budget of the central volcanic zone
Emission of volcanic gas is thought to be the dominant process by which volatiles transit from the deep earth to the atmosphere. Volcanic gas emissions, remain poorly constrained, and volcanoes of Peru are entirely absent from the current global dataset. In Peru, Sabancaya and Ubinas volcanoes are by far the largest sources of volcanic gas. Here, we report the first measurements of the compositions and fluxes of volcanic gases emitted from these volcanoes. The measurements were acquired in November 2015. We determined an average SO2 flux of 15.3 +/- 23 kg s(-1) (1325-ton day(-1)) at Sabancaya and of 11.4 +/- 3.9 kg s(-1) (988-ton day(-1)) at Ubinas using scanning ultraviolet spectroscopy and dual UV camera systems. In-situ Multi-GAS analyses yield molar proportions of H2O, CO2, SO2, H2S and H-2 gases of 73, 15, 10 1.15 and 0.15 mol% at Sabancaya and of 96, 2.2, 1.2 and 0.05 mol% for H2O, CO2, SO2 and H2S at Ubinas. Together, these data imply cumulative fluxes for both volcanoes of 282, 30, 27,1.2 and 0.01 kg s(-1) of H2O, CO2, SO2, H2S and H-2 respectively. Sabancaya and Ubinas volcanoes together contribute about 60% of the total CO2 emissions from the Central Volcanic zone, and dominate by far the total revised volatile budget of the entire Central Volcanic Zone of the Andes
Magmatic gas percolation through the old lava dome of El Misti volcano
The proximity of the major city of Arequipa to El Misti has focused attention on the hazards posed by the active volcano. Since its last major eruption in the fifteenth century, El Misti has experienced a series of modest phreatic eruptions and fluctuating fumarolic activity. Here, we present the first measurements of the compositions of gas emitted from the lava dome in the summit crater. The gas composition is found to be fairly dry with a H2O/SO2 molar ratio of 32 ± 3, a CO2/SO2 molar ratio of 2.7 ± 0.2, a H2S/SO2 molar ratio of 0.23 ± 0.02 and a H2/SO2 molar ratio of 0.012 ± 0.002. This magmatic gas signature with minimal evidence of hydrothermal or wall rock interaction points to a shallow magma source that is efficiently outgassing through a permeable conduit and lava dome. Field and satellite observations show no evolution of the lava dome over the last decade, indicating sustained outgassing through an established fracture network. This stability could be disrupted if dome permeability were to be reduced by annealing or occlusion of outgassing pathways. Continued monitoring of gas composition and flux at El Misti will be essential to determine the evolution of hazard potential at this dangerous volcano.This research was conducted as part of the ‘Trail By Fire’ expedition (PI: Y. Moussallam). The project was supported by the Royal Geographical Society (with the Institute of British Geographers) with the Land Rover Bursary; the Deep Carbon Observatory DECADE Initiative; Santander, Ocean Optics; Crowcon; Air Liquide; Thermo Fisher Scientific; Cactus Outdoor; Turbo Ace and Team Black Sheep. We thank Jean-loup Guyot, Sebastien Carretier, Rose-Marie Ojeda, Pablo Samaniego and Jean-Luc Lepennec together with IRD South-America personnel for all their logistical help. We are extremely grateful to Marco Rivera and all OVI personnel for their help and support. YM acknowledges support from the Scripps Institution of Oceanography Postdoctoral Fellowship program. A.A and G.T acknowledge the ERC grant no. 305377 (BRIDGE). CIS acknowledges a research start-up grant from Victoria University of Wellington. C.O. is supported by the NERC Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics. The Earth Observing-1 (EO-1) spacecraft is managed by NASA’s Goddard Space Flight Center, Greenbelt, Maryland, USA
First recorded eruption of Nabro volcano, Eritrea, 2011
We present a synthesis of diverse observations of the first recorded eruption of Nabro volcano, Eritrea, which began on 12 June 2011. While no monitoring of the volcano was in effect at the time, it has been possible to reconstruct the nature and evolution of the eruption through analysis of re- gional seismological and infrasound data and satellite remote sensing data, supplemented by petrological analysis of erupted products and brief field surveys. The event is notable for the comparative rarity of recorded historical eruptions in the region and of caldera systems in general, for the prodi- gious quantity of SO2 emitted into the atmosphere and the significant human impacts that ensued notwithstanding the low population density of the Afar region. It is also relevant in understanding the broader magmatic and tectonic signifi- cance of the volcanic massif of which Nabro forms a part and which strikes obliquely to the principal rifting directions in the Red Sea and northern Afar. The whole-rock compositions of
Editorial responsibility: G. Giordano
the erupted lavas and tephra range from trachybasaltic to trachybasaltic andesite, and crystal-hosted melt inclusions contain up to 3,000 ppm of sulphur by weight. The eruption was preceded by significant seismicity, detected by regional networks of sensors and accompanied by sustained tremor. Substantial infrasound was recorded at distances of hundreds to thousands of kilometres from the vent, beginning at the onset of the eruption and continuing for weeks. Analysis of ground deformation suggests the eruption was fed by a shal- low, NW–SE-trending dike, which is consistent with field and satellite observations of vent distributions. Despite lack of prior planning and preparedness for volcanic events in the country, rapid coordination of the emergency response miti- gated the human costs of the eruption
SO₂ emission rates and incorporation into the air pollution dispersion forecast during the 2021 eruption of Fagradalsfjall, Iceland
During the low-effusion rate Fagradalsfjall eruption (19 March – 18 September 2021), the emission of sulfur dioxide (SO₂) was frequently measured using ground-based UV spectrometers. The total SO₂ emitted during the entire eruption was 970 ± 540 kt, which is only about 6% of the SO₂ emitted during the similar length Holuhraun eruption (2014–2015). The eruption was divided into five phases based on visual observations, including the number of active vents and the occurrence of lava fountaining. The SO₂ emission rate ranged from 44 ± 19 kg/s in Phase 2 to 85 ± 29 kg/s in Phase 5, with an average of 64 ± 34 kg/s for the entire eruption. There was notable variability in SO₂ on short timescales, with measurements on 11 August 2021 ranging from 17 to 78 kg/s. SO₂ flux measurements were made using scanning DOAS instruments located at different distances from and orientations relative to the eruption site augmented by traverses. Four hundred and forty-four scan and traverse measurements met quality criteria and were used, along with plume height and meteorological data, to calculate SO₂ fluxes while accounting for wind-related uncertainties. A tendency for stronger SO₂ flux concurrent with higher amplitude seismic tremor and the occurrence of lava fountaining was observed during Phases 4 and 5 which were characterized by intermittent crater activity including observable effusion of lava and gas release interspersed with long repose times. This tendency was used to refine the calculation of the amount of SO₂ emitted during variably vigorous activity. The continuous seismic tremor time series was used to quantify how long during these eruption phases strong/weak activity was exhibited to improve the calculated SO₂ flux during these Phases. The total SO₂ emissions derived from field measurements align closely with results obtained by combining melt inclusion and groundmass glass analyses with lava effusion rate measurements (910 ± 230 kt SO₂). Specifically, utilizing the maximum S content found in evolved melt inclusions and the least remaining S content in accompanying quenched groundmasses provides an identical result between field measurements and the petrological calculations. This suggests that the maximum SO₂ release calculated from petrological estimates should be preferentially used to initialize gas dispersion models for basaltic eruptions when other measurements are lacking. During the eruption, the CALPUFF dispersion model was used to forecast ground-level exposure to SO₂. The SO₂ emission rates measured by DOAS were used as input for the dispersion model, with updates made when a significant change was measured. A detailed analysis of one mid-distance station over the entire eruption shows that the model performed very well at predicting the presence of volcanic SO₂ when it was measured. However, it frequently predicted the presence of SO₂ that was not measured and the concentrations forecasted had no correlation with the concentrations measured. Various approaches to improve the model forecast were tested, including updating plume height and SO₂ flux source terms based on measurements. These approaches did not unambiguously improve the model performance but suggest that improvements might be achieved in more-polluted conditions
A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes
dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe