1,655 research outputs found

    Radio frequency SF6 plasma modified single-walled carbon nanotubes: Synchrotron spectroscopy and plasma characterisation studies

    Get PDF
    Single-Walled Carbon Nanotubes are fluorinated within a Radio-Frequency Plasma Reactor using SF6 as a source gas. To develop an understanding of how varying experimental parameters affect the plasma, and hence the resultant modification of the nanotubes, a Langmuir Probe has been employed to study the plasma system. Information about plasma densities, electron temperatures, and the plasma potential is presented and discussed. An interesting oscillatory behavior within the plasma has also been observed and studied

    Transition from single to multi-walled carbon nanotubes grown by inductively coupled plasma enhanced chemical vapor deposition

    Get PDF
    In this work a simple and up-scalable technique for creating arrays of high purity carbon nanotubes via plasma enhanced chemical vapor deposition is demonstrated. Inductively coupled plasma enhanced chemical vapor deposition was used with methane and argon mixtures to grow arrays in a repeatable and controllable way. Changing the growth conditions such as temperature and growth time led to a transition between single and multi-walled carbon nanotubes and was investigated. This transition from single to multi-walled carbon nanotubes is attributed to a decrease in catalytic activity with time due to amorphous carbon deposition combined with a higher susceptibility of single-walled nanotubes to plasma etching. Patterning of these arrays was achieved by physical masking during the iron catalyst deposition process. The low growth pressure of 100 mTorr and lack of reducing gas such as ammonia or hydrogen or alumina supporting layer further show this to be a simple yet versatile procedure. These arrays were then characterized using scanning electron microscopy, Raman spectroscopy and x-ray photoelectron spectroscopy. It was also observed that at high temperature (550 °C) single-walled nanotube growth was preferential while lower temperatures (450 °C) produced mainly multi-walled arrays

    Phase evolution in calcium molybdate nanoparticles as a function of synthesis temperature and its electrochemical effect on energy storage

    Get PDF
    The design of a suitable electrode is an essential and fundamental research challenge in the field of electrochemical energy storage because the electronic structures and morphologies determine the surface redox reactions. Calcium molybdate (CaMoO4_{4}) was synthesized by a combustion route at 300 °C and 500 °C. We describe new findings on the behaviour of CaMoO4_{4} and evaluate the influence of crystallinity on energy storage performance. A wide range of characterization techniques was used to obtain detailed information about the physical and morphological characteristics of CaMoO4_{4}. The characterization results enable the phase evolution as a function of the electrode synthesis temperature to be understood. The crystallinity of the materials was found to increase with increasing temperature but with no second phases observed. Molecular dynamics simulation of electronic structures correlated well with the experimental findings. These results show that to enable faster energy storage and release for a given surface area, amorphous CaMoO4_{4} is required, while larger energy storage can be obtained by using crystalline CaMoO4_{4}. CaMoO4_{4} has been evaluated as a cathode material in classical lithium-ion batteries recently. However, determining the surface properties in a sodium-ion system experimentally, combined with computational modelling to understand the results has not been reported. The superior electrochemical properties of crystalline CaMoO4_{4} are attributed to its morphology providing enhanced Na+^{+} ion diffusivity and electron transport. However, the presence of carbon in amorphous CaMoO4_{4} resulted in excellent rate capability, suitable for supercapacitor applications

    Chemically specific identification of carbon in XPS imaging using Multivariate Auger Feature Imaging (MAFI)

    Get PDF
    Until now, a difficult prospect in XPS imaging has been the identification of similar chemical states of carbon. With the advent of novel nano-carbons such as nanotubes and graphene, the ability to easily and unambiguously identify materials of varying sp2/sp3 nature in XPS spectra and images is becoming increasingly important. We present herein methods for the identification of such species in XPS images by shifting focus from the traditionally analysed C1s region to the X-ray induced carbon Auger feature. By extracting the D-Parameter from XPS data, we have generated what we refer to as "D-Parameter Images", that clearly identify regions of different carbon hybridisation in an image of a graphite flake mounted on carbon tape, and areas of reduced graphene oxide (GO) in a laser-scribed GO film. This method is then enhanced by multivariate analysis, a technique we call "Multivariate Auger Feature Imaging", where the distinction between varying sp2 carbon content on a surface is improved

    Palaeo-sea-level and palaeo-ice-sheet databases: Problems, strategies, and perspectives

    Get PDF
    Sea-level and ice-sheet databases have driven numerous advances in understanding the Earth system. We describe the challenges and offer best strategies that can be adopted to build self-consistent and standardised databases of geological and geochemical information used to archive palaeo-sea-levels and palaeo-ice-sheets. There are three phases in the development of a database: (i) measurement, (ii) interpretation, and (iii) database creation. Measurement should include the objective description of the position and age of a sample, description of associated geological features, and quantification of uncertainties. Interpretation of the sample may have a subjective component, but it should always include uncertainties and alternative or contrasting interpretations, with any exclusion of existing interpretations requiring a full justification. During the creation of a database, an approach based on accessibility, transparency, trust, availability, continuity, completeness, and communication of content (ATTAC3) must be adopted. It is essential to consider the community that creates and benefits from a database. We conclude that funding agencies should not only consider the creation of original data in specific research-question-oriented projects, but also include the possibility of using part of the funding for IT-related and database creation tasks, which are essential to guarantee accessibility and maintenance of the collected data

    Electroless Nickel Deposition:An Alternative for Graphene Contacting

    Get PDF
    We report the first investigation into the potential of electroless nickel deposition to form ohmic contacts on single layer graphene. To minimize the contact resistance on graphene, a statistical model was used to improve metal purity, surface roughness, and coverage of the deposited film by controlling the nickel bath parameters (pH and temperature). The metalized graphene layers were patterned using photolithography and contacts deposited at temperatures as low as 60 °C. The contact resistance was 215 ± 23 ω over a contact area of 200 μm × 200 μm, which improved upon rapid annealing to 107 ± 9 ω. This method shows promise toward low-cost and large-scale graphene integration into functional devices such as flexible sensors and printed electronics

    Detection of optical coronal emission from 10^6 K gas in the core of the Centaurus cluster

    Get PDF
    We report a detection (3.5x10^37 \pm 5.6x10^36 ergps) of the optical coronal emission line [Fe X]6374 and upper limits of four other coronal lines using high resolution VIMOS spectra centred on NGC 4696, the brightest cluster galaxy in the Centaurus cluster. Emission from these lines is indicative of gas at temperatures between 1 and 5 million K so traces the interstellar gas in NGC 4696. The rate of cooling derived from the upper limits is consistent with the cooling rate from X-ray observations (~10 solar masses per year) however we detect twice the luminosity expected for [Fe X]6374 emission, at 1 million K, our lowest temperature probe. We suggest this emission is due to the gas being heated rather than cooling out of the intracluster medium. We detect no coronal lines from [Ca XV], which are expected from the 5 million K gas seen near the centre in X-rays with Chandra. Calcium is however likely to be depleted from the gas phase onto dust grains in the central regions of NGC 4696.Comment: 11 pages, 13 figures, 2 tables, accepted for publication in MNRA

    Definition of a new (Doniach-Sunjic-Shirley) peak shape for fitting asymmetric signals applied to reduced graphene oxide/graphene oxide XPS spectra

    Get PDF
    The existence of asymmetry in X-ray photoelectron spectroscopy (XPS) photoemission lines is widely accepted, but line shapes designed to accommodate asymmetry are generally lacking in theoretical justification. In this work, we present a new line shape for describing asymmetry in XPS signals that is based on two facts. First, the most widely known line shape for fitting asymmetric XPS signals that has a theoretical basis, referred to as the Doniach-Sunjic (DS) line shape, suffers from a mathematical inconvenience, which is that for asymmetric shapes the area beneath the curve (above the x-axis) is infinite. Second, it is common practice in XPS to remove the inelastically scattered background response of a peak in question with the Shirley algorithm. The new line shape described herein attempts to retain the theoretical virtues of the DS line shape, while allowing the use of a Shirley background, with the consequence that the resulting line shape has a finite area. To illustrate the use of this Doniach-Sunjic-Shirley (DSS) line shape, a set of spectra obtained from varying amounts of graphene oxide (GO) and reduced GO on a patterned, heterogeneous surface are fit and discussed
    • …
    corecore