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Transition from single to multi-walled carbon nanotubes grown by
inductively coupled plasma enhanced chemical vapor deposition

Mark A. Bissett, Anders J. Barlow, Joe G. Shapter, and Jamie S. Quintona)

Smart Surface Structures Group, Centre for Nanoscale Science and Technology, School of Chemical
and Physical Sciences, Flinders University, Bedford Park, Adelaide, South Australia, 5042

(Received 22 May 2011; accepted 22 June 2011; published online 1 August 2011)

In this work a simple and up-scalable technique for creating arrays of high purity carbon nanotubes

via plasma enhanced chemical vapor deposition is demonstrated. Inductively coupled plasma

enhanced chemical vapor deposition was used with methane and argon mixtures to grow arrays in a

repeatable and controllable way. Changing the growth conditions such as temperature and growth time

led to a transition between single and multi-walled carbon nanotubes and was investigated. This

transition from single to multi-walled carbon nanotubes is attributed to a decrease in catalytic activity

with time due to amorphous carbon deposition combined with a higher susceptibility of single-walled

nanotubes to plasma etching. Patterning of these arrays was achieved by physical masking during the

iron catalyst deposition process. The low growth pressure of 100 mTorr and lack of reducing gas such

as ammonia or hydrogen or alumina supporting layer further show this to be a simple yet versatile

procedure. These arrays were then characterized using scanning electron microscopy, Raman

spectroscopy and x-ray photoelectron spectroscopy. It was also observed that at high temperature

(550 �C) single-walled nanotube growth was preferential while lower temperatures (450 �C) produced

mainly multi-walled arrays. VC 2011 American Institute of Physics. [doi:10.1063/1.3615945]

I. INTRODUCTION

Carbon nanotubes (CNTs) are a unique material with

many varied applications in the electronics industry such as

field emission,1 electrochemical sensors,2,3 and photovol-

taics.4–6 However, one hindrance to their wide-scale imple-

mentation is the ability to produce them both cheaply and

with a well-defined structure, both physical and electronic.

Current synthesis techniques include arc discharge,7 laser

ablation,8 and chemical vapor deposition9 (CVD), with CVD

being the most promising approach for high yields. CVD has

the benefit of producing the nanotubes directly on a substrate

making integration into devices much easier than solution

processing of CNTs. An extension to CVD, plasma-enhanced

CVD (PECVD) offers several advantages over thermal CVD

such as the use of low pressure environments, aiding cleanli-

ness and meaning that much lower concentrations of reactants

can be used, while the plasma state aids dissociation of the

feedstock gas affording lower temperature processes to be

used, and therefore a wider range of substrates.10–12 While the

plasma typically contains a carbon feedstock gas such as

methane or acetylene, it also often consists of a reducing gas

such as hydrogen or ammonia. In the case of hydrogen this

has been found to aid in the carbon feedstock dissociation and

also affect the catalyst activity.13,14

Although PECVD has been studied extensively the pro-

duction of single-walled carbon nanotubes (SWCNTs) remains

more difficult to achieve than multi-walled nanotubes

(MWCNTs).12,15,16 It has been shown previously that the

CNTs can be tailored by altering growth conditions such as the

catalyst material and thickness, plasma composition and

power, and the growth temperature.12,17 Low temperatures

tend to favor production of MWCNT and high temperature

tending toward SWCNT.12,18

For any wide-scale device implementation the selectiv-

ity of nanotube type is paramount. One easy way to analyze

grown CNTs is with Raman spectroscopy. CNTs have many

specific peaks in their Raman spectra that can be used to

identify them as either SWCNT or MWCNT and also be

used as a measure of defects.19 The main peaks of interest

are the RBM or radial breathing mode which is caused by

circumferential phonon interaction. The position of this peak

is directly proportional to the diameter of the nanotube. The

D band or disorder band is caused by disruptions to the elec-

tronic density of states of the nanotube. The G band or gra-

phitic band is caused by sp2 hybridized carbon present in

graphite and CNTs. The ratio of disorder to graphitic carbon

(D/G ratio) can be used as a measure of CNT purity, pristine

SWCNT nanotubes should have very little to no D band,

whereas MWCNT will have very high D band intensity.

Here Raman spectroscopy is used to analyze CNTs grown

by PECVD and show that by altering the synthesis variables

such as growth time and growth temperature that SWCNT or

MWCNT can be selectively produced and patterned with

exceptional homogeneity across a large area. The transition

from single to multi-walled structures with changing growth

time and temperature is investigated. The low pressure used

for growth, 100 mTorr, allows for cheap up-scaling while the

lack of both an alumina underlay and a reducing gas also

reduces overall costs and simplifies the growth procedure.

II. EXPERIMENTAL DETAILS

Nanotube growth was performed in a radio-frequency

(13.56 MHz) inductively coupled plasma system with a base

a)Author to whom correspondence should be addressed. Electronic mail:

Jamie.Quinton@flinders.edu.au.
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pressure of 10�6 Torr, shown in Fig. 1. In this work, boron

doped p-type silicon wafers (h100i, 0.0008–0.0012 X cm,

Siltronix, France) were used as substrates. Silicon provides

excellent thermal stability and the native oxide present on

the surface (SiO2) also assists in CNT growth by inhibiting

the diffusion of catalyst atoms into the substrate.20 A 5 nm

thick layer of 99.998% iron (Koch-Light Laboratories) was

deposited onto the silicon substrate using a commercial sput-

ter coater (Quorumtech K575X, Quorum Technologies, UK).

The thickness was measured by an in situ quartz crystal

microbalance. By masking areas of the substrate it is possi-

ble to investigate the difference between areas where catalyst

has been deposited and the masked areas of bare substrate.

Substrates were heated to 450–650 �C as specified via a

resistive heating element embedded within the sample table,

and left to equilibrate for 10 min. The carbon feedstock gas

used was high purity methane, it has been shown previously

that pure methane needs to be diluted to achieve CNT

growth.21 Neutrals such as nitrogen and argon plasma help to

remove any amorphous carbon produced during growth,

leading to a high purity and homogenous CNT array.12,21,22

As mentioned previously typically hydrogen is added into

the growth mixture, however, in this work this was found to

not be necessary and this is believed to be due to the large

number of dissociation products available from a methane

plasma, listed in Table I, which show that molecular hydro-

gen can be supplied by the methane itself.

In this work methane was diluted with high purity argon.

Once the sample is thermally stable the gas mixture is intro-

duced to provide a total pressure of 100 mTorr in a 1:4 ratio

(CH4:Ar). The plasma is then ignited at 10 W total power

and growth is undertaken for 10, 30, and 60 min as specified

after which the plasma was turned off and the sample left to

cool to room temperature under vacuum.

Synthesized CNT arrays were analyzed using scanning

electron microscopy (SEM) (Camscan MX2500, CamScan

Electron Optics Limited, UK) using a secondary electron de-

tector. The electron source was a tungsten filament and the

accelerating voltage used was 10 kV. Prior to imaging each

sample was sputter coated with 10 nm of platinum using a

Quorumtech K575X (Quorum Technologies, UK).

The chemical environment of the substrates was ana-

lyzed using x-ray photoelectron spectroscopy (XPS). The

XPS setup used in this work was a Leybold-Heraeus LHS-

10, in a chamber with a base pressure of 10�9 Torr and an

operating pressure of 10�8 Torr. The source was a dual an-

ode x-ray source (Specs, Germany) and the energy used was

Al Ka (1486.6 eV) with a 20 eV pass energy. Survey spectra

were taken in constant retarding ratio mode, while high reso-

lution spectra were an average of five spectra taken in fixed

analyzer transmission mode.

Confocal Raman spectroscopy was used to investigate

the structure of the produced CNT arrays. Raman measure-

ments in this work were taken on an alpha300R microscopy/

spectroscopy setup (Witec, Germany) using a 532 nm laser

with a maximum power of 65 mW. For each single spectrum

an integration time of 6 seconds was used with ten iterations.

For image spectra, where the size is mentioned next to the

appropriate figure, 2500 spectra with an integration time of

0.5 s and 50� 50 points per image was used. The spectra

FIG. 1. (Color online) Reaction chamber used in this research showing (A) top view and (B) side view. In (B) the antenna is shown rotated 90� for clarity. Dis-

tance between antenna and sample is 10 cm.

TABLE I. Methane dissociation reactions (Ref. 23).

1 e�þCH4 ! CH3þHþe�

2 e�þCH4 ! CH2þH2 þ e�

3 e�þCH4 ! CHþ H2þHþe�

4 e�þCH4 ! Cþ 2H2 þ e�

034301-2 Bissett et al. J. Appl. Phys. 110, 034301 (2011)
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were background subtracted using the WITEC packaged

software.

III. RESULTS AND DISCUSSION

A. Scanning electron microscopy

The growth conditions first investigated were 650 �C and

10 min of plasma treatment. To first analyze the substrate after

growth SEM was used to image the surface. Figure 2(A) is the

SEM image which shows a clear distinction between areas

that catalyst was deposited on which subsequently produced

SWCNT and the masked areas showing bare silicon. This

indicates, as expected, that growth only occurs where iron cat-

alyst particles are deposited. Figure 2(B) is an increased mag-

nification of the SWCNT area showing a rough surface but

without discernible tube like features. This would suggest that

the nanotubes present are very short and thus difficult to

resolve with SEM. Thus it is necessary to use another tech-

nique such as Raman to ascertain that indeed SWCNT are

present.

B. Raman spectroscopy

To confirm the presence of CNTs when growth is under-

taken for 10 min at a temperature of 650 �C and characterize

them, confocal Raman microscopy and spectroscopy were

used. In Raman microscopy a Raman spectrum is taken at mul-

tiple points across a large area and then the intensity of a peak

is plotted. The most intense nanotube specific peaks are the

first-order G or graphitic band at �1590 cm�1 which occurs in

sp2 hybridized carbon such as graphite and CNTs and the one-

phonon double resonance D or disorder band at 1350 cm�1

which alters in intensity depending of number of defects and

walls present in CNTs.19 In the Fig. 3 inset the Raman image

(100� 100 lm) of the G (or graphitic) band at 1590 cm�1

clearly shows the boundary between the masked, where no cat-

alyst exists, and unmasked areas, where SWCNTs are clearly

present. This indicates that nanotube growth has occurred only

where the iron nanoparticles are present. Figure 3 also com-

pares the Raman spectra of the bare silicon region (dashed

line) to the CNT growth region (solid line). The presence of

the narrow G band at 1590 cm�1 is indicative that sp2 hybri-

dized carbon has been produced. The intensity of the D and G

bands provide a quantitative measure of the level of defects or

functionalization present in the SWCNT.17,18 The average D/G

ratio of 0.17 agrees well with other ratios found for high purity

SWCNTs. The single sharp peak at 173 cm�1 known as the ra-

dial breathing mode (or RBM) is well-known to be caused by

circumferential expansions that are only present in carbon

nanotubes.19 Due to only a single sharp RBM peak being seen,

despite the spot size of the Raman sampling an area of approx-

imately 300 nm in diameter, there must be exceptional

FIG. 2. SEM image of surface after

PECVD showing masked areas where

no catalyst is present and unmasked

where nanotubes have been produced

(A), scale bar is 10 lm. Increased mag-

nification of the PECVD surface show-

ing short SWCNT (B), scale bar is 2 lm.

FIG. 3. (Color online) Raman spectra of

the substrate showing boundary between

areas with catalyst (SWCNT-solid line)

and without catalyst (silicon-dashed

line). Inset is a 100� 100 lm Raman

image, plotting the intensity of the G

band at 1590 cm�1 showing the bound-

ary between the masked and unmasked

areas.
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homogeneity of the nanotube diameters across the surface. As

mentioned previously the RBM is a circumferentially depend-

ent peak, thus its Raman frequency can be used to determine

the diameter of the produced nanotubes,19 the average nano-

tube diameter across the 50 lm2 area was found to be

1.47 6 0.03 nm. The very narrow peak width and high inten-

sity of both the RBM and G band combined with the low in-

tensity of the D peak indicate that high purity tubes with few

defects have been produced.

The G peak for the patterned SWCNT also exhibits

some further fine structure when enlarged, seen in Fig. 4,

where the G peak exists as both a G� peak at 1570 cm�1 and

a Gþ peak at 1590 cm�1. This is characteristic of SWCNT.19

Also the relative intensities of these Gþ/� peaks provides an

indication of whether the SWCNTs are semi-conducting or

metallic, with a more intense Gþ peak, as seen in the

FIG. 4. Enlargement of Raman G band region showing G� peak at

1570 cm�1 and Gþ peak at 1590 cm�1, characteristic of semiconducting

SWCNT.

FIG. 5. (Color online) Raman spectra

with changing growth time (A) and

growth temperature (B).
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produced SWCNTs, indicating that semi-conducting

SWCNTs have been produced.24 This may be expected as it

has been shown previously that metallic SWCNT undergo

selective etching during PECVD, specifically in the presence

of methane, leading to preferential semi-conducting nano-

tube growth.25 This would be of benefit for applications such

as photovoltaics which have shown that semi-conducting

nanotubes are needed while metallic nanotubes are detrimen-

tal to performance.4,26,27

After establishing that SWCNTs can be produced and

patterned into defined areas, the growth conditions were then

altered to produce different species of nanotube. Figure 5

shows the Raman spectra for changing the growth time and

the growth temperature. In Fig. 5(A) we see the Raman spec-

tra with changing growth time. As discussed previously 10

min of growth produces a characteristic SWCNT spectrum,

with a clear RBM (dt¼ 1.47 nm), low D/G ratio and Gþ/�

peak splitting. If the length of time exposed to the plasma is

extended to 30 min the spectrum still has SWCNT specific

peaks such as the RBM and Gþ/� splitting; however, the

RBM is shifted to a lower frequency of 149 cm�1 indicating

that the tube diameter has increased to 1.66 nm. As the

growth time is further extended to 60 min the spectrum

changes significantly, producing no RBM and a D/G ratio of

approximately 1, indicating that MWCNTs have been pro-

duced. A similar non-linear growth behavior has been

observed previously for the production of nanotubes using a

cobalt catalyst in the presence of hydrogen and has been

attributed to an initial growth of SWCNTs followed by a

decrease in the catalytic activity, due to amorphous carbon

deposition, of the nanoparticles leading to MWCNT forma-

tion.28 Additionally the SWCNTs are quite fragile and over

prolonged time can be preferentially etched away by the

plasma.22 However, MWCNTs are more resistant to plasma

etching and so after a prolonged growth exposure only

MWCNTs remain. Short growth time also tends to produce a

small distribution of nanotube lengths and diameters, as

opposed to long growth times that produce large distribu-

tions of lengths and diameters, again increasing the chance

of MWCNTs being present.29

A similar trend is observed in Fig. 5(B) with changing

growth temperature. As discussed previously it has been

shown that higher temperatures tend to preferentially pro-

duce SWCNT and a similar trend is observed here.18 The

650 �C spectrum is again clearly SWCNT, lowering the tem-

perature to 550 �C lowers the D/G ratio slightly, and the

RBM lowers to 156 cm�1 indicating a diameter increase to

1.59 nm, but still maintains the SWCNT specific peaks.

However, upon lowering the temperature to 450 �C the spec-

trum clearly changes significantly, again now showing a D/G

ratio of approximately 1 and no RBM is observed. The

increased noise in the 450 �C spectrum is due to the low in-

tensity of the G peaks against which the spectra have been

normalized.

The effect of plasma heating also has to be considered. It

has been observed previously that CNT growth can be under-

taken without any external heating by the inherent plasma

heating of the substrate.30 However, to achieve the required

growth temperature a high plasma density and a DC plasma

power of 200 W was required. In this work the use of a much

lower plasma density and lower RF power of 10 W would

tend to indicate that the effect of plasma heating would be

negligible. Indeed if growth is attempted without external

heating no carbon nanostructures are achieved. Figure 5 dem-

onstrates how by simply changing one growth variable the re-

sultant CNTs produced can be altered to suit the desired

application without the need for large experimental changes.

C. X-ray photoelectron spectroscopy

To complement the Raman data, XPS was performed to

analyze the surface of the SWCNT sample. Figure 6 shows

the XPS spectra of successive steps during growth. Starting

with the bare silicon substrate followed by deposition of the

FIG. 6. (Color online) XPS survey spec-

tra for bare silicon, silicon after iron

deposition and finally after PECVD

growth has occurred.
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5 nm of iron and finally after growth has occurred. Interest-

ingly after growth has been undertaken some iron signal is

still present and this may be due to either catalyst particles

present on the end of the nanotubes, the so called “tip-

growth” process, or more likely is simply due to the low

height of the grown nanotube array causing the iron particles

at the base to be detected. There is also a small amount of sil-

icon still detectable and this again indicates that the coverage

of the surface is not complete and the thickness of the nano-

tubes remains low.

If the carbon deposited on the surface was amorphous in

nature or if the CNTs contained defects in their walls as

functional groups, then XPS can determine the extent of any

functionality and if so, the specific chemical functionalities

present. Figure 7 shows the high resolution scan of the C1s

region on a sample of grown SWCNTs from 10 min of

growth at 650 �C. The spectrum has been fitted with three

components; one at 284.4 eV attributed to sp2 hybridized

carbon, a second peak at 285.2 attributed to sp3 carbon

mainly from adventitious carbon from atmospheric contami-

nants,13 and finally a peak at 286.8 eV encompassing oxides

of carbon such as carboxyl and carbonyl moieties.31 The

XPS data shows predominantly graphitic carbon is present

on the surface, in agreement with the Raman data presented

earlier. There is a small amount amorphous or sp3 hybridized

carbon present on the surface, possibly from carbonaceous

impurities or possibly defect sites along the CNT walls and

end groups. The low amounts of this defective amorphous

carbon agree with the D/G ratio seen in the Raman data, indi-

cating high purity. A similar spectrum was taken for the

grown MWCNTs after 60 min of growth; however, there

was negligible difference as the chemical environment of the

carbon is identical in both cases.

IV. CONCLUSION

A simple and tunable method for producing carbon

nanotubes in patterned arrays by PECVD has been demon-

strated. The transition between SWCNTs and MWCNTs was

investigated and appears to be caused by an increased expo-

sure to the growth plasma which leads to decreased catalytic

activity of the iron nanoparticles and preferential etching of

SWCNTs leaving a predominantly MWCNT surface. The

selective production of high purity semi-conducting

SWCNTs was also observed for short growth times. Such

nanotubes are vital for use in applications where semi-con-

ducting density of states is necessary, such as photovoltaics.

These factors are of importance for any future industrial

scale implantation of PECVD grown carbon nanotubes.
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