3 research outputs found

    The Impact of Dreissenid Mussels on Growth of the Fragile Papershell (Leptodea fragilis), the Most Abundant Unionid Species in Lake Erie

    Get PDF
    The arrival of zebra mussels (Dreissena polymorpha (Pallas, 1771)) and subsequently quagga mussels (Dreissena bugensis Andrusov, 1897) (Dreissenidae) in the Great Lakes in the 1980s induced many changes, most notably the devastation of native freshwater mussel species. Recently, empty shells of the fragile papershell (Leptodea fragilis (Rafinesque, 1820)) have become common, particularly in the western basin of Lake Erie, suggesting that this fast-growing species may be increasing in numbers in the lake. To examine continued competition with dreissenids, shell age and length of L. fragilis were used to contrast lifespan and growth rate, estimated as the slope of age on shell length, for shells from two beach localities where byssal threads were present on most shells and two sites where dreissenids were rare or absent. Few recent shells from Lake Erie beaches exceeded 5 years of age, and byssal thread counts were more numerous on older shells. Growth and lifespan were estimated to be significantly lower where dreissenid mussels remained numerous than when measured either from historic collections along Lake Erie or from protected populations. Therefore, even for this early-reproducing species, competition from dreissenids may continue to interfere with growth and shorten lifespan, which are effects few other unionid species can likely tolerate sufficiently to sustain population growt

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    No full text
    International audienceSpinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software
    corecore