54 research outputs found

    RÎle des centrosomes dans la régulation du point de contrÎle en G2/M en réponse aux dommages à l'ADN

    Full text link
    Les centrosomes sont les centres organisateurs des microtubules et jouent un rĂŽle crucial dans l’organisation du fuseau bipolaire pendant la mitose. Plus rĂ©cemment, le rĂŽle des centrosomes dans la rĂ©gulation de l’entrĂ©e en mitose a Ă©tĂ© mis en Ă©vidence. Les centrosomes semblent Ă©galement contribuer Ă  l’activation du point de contrĂŽle en G2/M en rĂ©ponse aux lĂ©sions de l’ADN en servant de point de rencontre pour les rĂ©gulateurs du cycle cellulaire et les gĂšnes de rĂ©ponse aux dommages Ă  l’ADN. L’amplification du nombre de centrosomes est une caractĂ©ristique des cellules tumorales mais de façon intĂ©ressante, elle constitue aussi une rĂ©ponse des cellules aux dommages Ă  l’ADN. Les mĂ©canismes qui rĂ©gulent l’homĂ©ostasie et la dynamique des centrosomes sont encore mal compris. Pour mieux comprendre le rĂŽle des centrosomes dans la rĂ©gulation du point de contrĂŽle en G2/M en rĂ©ponse aux dommages Ă  l’ADN, le recrutement et/ou l’activation au niveau des centrosomes des kinases impliquĂ©es dans les voies de signalisation de ce point de contrĂŽle ont Ă©tĂ© Ă©tudiĂ©s par immunofluorescence indirecte sur cellules HeLaS3 ou par Western blot sur des fractions enrichies en centrosomes. Nos rĂ©sultats montrent que les kinases ATM, ATR, CHK1 et CHK2 sont actives dans les centrosomes de cellules en phase G2. En rĂ©ponse Ă  l’activation du point de contrĂŽle en G2/M, les formes actives de ces kinases diminuent au niveau des centrosomes. Pour identifier de nouveaux acteurs centrosomaux potentiellement impliquĂ©s dans la rĂ©gulation de ce point de contrĂŽle, une analyse comparative des protĂ©omes de centrosomes purifiĂ©s a Ă©galement Ă©tĂ© rĂ©alisĂ©e par spectromĂ©trie de masse. Pour Ă©tudier plus particuliĂšrement la fonction de CHK2 au niveau des centrosomes, nous avons dĂ©velopper des outils molĂ©culaires qui serviront Ă  dĂ©terminer le rĂŽle de la sous population de CHK2 localisĂ©e aux centrosomes 1) dans la rĂ©gulation de l’entrĂ©e en mitose au cours d’un cycle normal 2) dans l’activation et la stabilitĂ© du point de contrĂŽle en G2/M en rĂ©ponse aux lĂ©sions l’ADN et 3) dans l’homĂ©ostasie et la dynamiques des centrosomes en rĂ©ponse aux dommages Ă  l’ADN. Cette Ă©tude permettra de mieux comprendre la fonction des centrosomes dans la rĂ©ponse cellulaire au stress gĂ©notoxiques anti-cancereux et de rĂ©vĂ©ler de nouvelles fonctions potentielles pour la kinase CHK2.Centrosomes function primarily as microtubule-organizing centres that play a crucial rĂŽle in the equal segregation of chromosomes by organizing the bipolar spindle during mitosis. Recent studies have revealed the involvement of centrosomes in regulating G2/M transition during normal cell cycle progression. Moreover, increasing evidence suggests that centrosomes also play roles in the DNA damage response and cell cycle checkpoint signalling by serving as “meeting points” where DNA-damage-responsive genes and cell cycle regulators communicate. Numerical centrosome aberrations, or centrosome amplification, is a common feature of most human cancers that promotes aneuploidy and is involved in tumorigenesis as well as tumor progression. Interestingly, centrosome amplification and fragmentation have also been shown to constitute a cellular response to impaired DNA integrity that triggers cell death by mitotic failure. Although their roles are critical in tumorigenesis and the DNA damage response, the mechanisms that regulate centrosome homeostasis and dynamics remain poorly understood. To gain a better understanding of the role of the centrosomes in checkpoint regulation at G2/M transition in response to DNA damage; the recruitment and/or centrosomal activation of the kinases implicated in this checkpoint pathways were studied by indirect immunofluorescence on HeLaS3 cells or western blot on purified centrosomal fractions. Our results showed that the kinases CHK1, CHK2, ATM and ATR are activated at the centrosomes in cell synchronised in G2. However, after activation of the G2/M checkpoint, these activated kinases moved from centrosomes. Finally, to identify new centrosomal actors potentially involved in the regulation of this checkpoint, a comparative analysis of the proteome of purified centrosomes was also realized by mass spectrometry. To study more specifically the function of CHK2 at the centrosomes, we developped molecular tools wich will serve to determine the role of the sub-population of CHK2 localized at the centrosomes in 1) in regulating entry into mitosis during unperturbed cell cycle progression, 2) in checkpoint regulation at G2/M transition in response to DNA damage induced by ionizing radiations and genotoxic drugs and 3) in centrosomal homeostasis and dynamics by regulating centrosomal amplification, fragmentation and clustering during normal cell cycle progression and in response to genotoxic drugs. This study will further elucidate the importance of centrosomes in regulating the cell response to genotoxic stress induced by anti-cancer treatments and reveal potential new functions for the kinase CHK2 in unperturbed cell cycle progression and in response to DNA damage

    Études fonctionnelles de deux nouvelles protĂ©ines centrosomales, NPHP5 et Cep76, et leurs implications dans les maladies humaines

    Get PDF
    Les centrosomes sont de petits organites qui rĂ©gulent divers processus cellulaires comme la polaritĂ© ou la mitose dans les cellules de mammifĂšres. Ils sont composĂ©s de deux centrioles entourĂ©s par une matrice pĂ©ricentriolaire. Ces centrosomes sont les principaux centres organisateurs de microtubules. De plus, ils favorisent la formation de cils, des protubĂ©rances sur la surface des cellules quiescentes qui sont critiques pour la transduction du signal. Une grande variĂ©tĂ© de maladies humaines telles que les cancers ou les ciliopathies sont liĂ©es Ă  un mauvais fonctionnement des centrosomes et des cils. C’est pourquoi le but de mes projets de recherche est de comprendre les mĂ©canismes nĂ©cessaires Ă  la biogĂ©nĂšse et au fonctionnement des centrosomes et des cils. Tout d'abord, j’ai caractĂ©risĂ© une nouvelle protĂ©ine centrosomale nommĂ©e nephrocystine - 5 (NPHP5). Cette protĂ©ine est localisĂ©e dans les cellules en interphase au niveau de la rĂ©gion distale des centrioles. Sa dĂ©plĂ©tion inhibe la migration des centrosomes Ă  la surface cellulaire lors de l’étape prĂ©coce de la formation des cils. NPHP5 interagit avec la protĂ©ine CEP290 via sa rĂ©gion C-terminale qui est essentielle pour la ciliogenĂšse. Elle interagit Ă©galement avec la calmoduline ce qui empĂȘche son auto-agrĂ©gation. J’ai dĂ©montrĂ© que les domaines de liaison de NHPH5 Ă  CEP290 et Ă  la calmoduline, ainsi que son domaine de localisation centrosomale sont sĂ©parables. De plus, j’ai dĂ©montrĂ© que les protĂ©ines NPHP5 prĂ©sentant des mutations pathogĂšnes ne peuvent plus interagir avec CEP290 et ne sont plus localisĂ©es aux centrosomes, rendant ainsi ces protĂ©ines non fonctionnelles. Enfin, en utilisant une approche pharmacologique pour moduler les Ă©vĂ©nements en aval dans la voie ciliogĂ©nique, j’ai montrĂ© que la formation des cils peut ĂȘtre restaurĂ©e mĂȘme en absence de NPHP5. D’autre part, j’ai Ă©tudiĂ© le rĂŽle de NPHP5 dans l'assemblage et le trafic du complexe BBSome dans le cil. Le BBSome est composĂ© de huit sous-unitĂ©s diffĂ©rentes qui s’assemblent en un complexe fonctionnel dont on sait peu de chose sur la rĂ©gulation spatiotemporelle de son processus d'assemblage. J’ai prĂ©cĂ©demment montrĂ© que NPHP5 favorisait la formation des cils et que son dysfonctionnement contribuait au dĂ©veloppement de nĂ©phronophtise (NPHP). Bien que la NPHP et le syndrome de Bardet-Biedl (BBS) soient des ciliopathies qui partagent des caractĂ©ristiques cliniques communes, la base molĂ©culaire de ces ressemblances phĂ©notypiques n’est pas comprise. J’ai constatĂ© que NPHP5, localisĂ© Ă  la base du cil, contient deux sites de liaison distincts pour le BBSome. De plus, j’ai dĂ©montrĂ© que NPHP5 et son partenaire CEP290 interagissent de façon dynamique avec le BBSome pendant la transition de la prolifĂ©ration Ă  la quiescence. La dĂ©plĂ©tion de NPHP5 ou CEP290 conduit Ă  la dissociation d’au moins deux sous-unitĂ©s du BBSome formant alors un sous-complexe dont la capacitĂ© de migration dans le cil n’est pas compromise. J’ai montrĂ© que le transport des cargos vers le compartiment ciliaire par ce sous-complexe n’est que partiellement altĂ©rĂ©. Enfin, j’ai Ă©galement concentrĂ© mes recherches sur une autre protĂ©ine centrosomale peu caractĂ©risĂ©e. La protĂ©ine centrosomale de 76 kDa (Cep76) a Ă©tĂ© prĂ©cĂ©demment impliquĂ©e dans le maintien d’une duplication unique des centrioles par cycle cellulaire, et dans une interaction avec la kinase cycline-dĂ©pendante 2 (CDK2). Cep76 est prĂ©fĂ©rentiellement phosphorylĂ©e par le complexe cycline A/CDK2 sur le site unique S83. Cet Ă©vĂ©nement est essentiel pour supprimer l'amplification des centrioles en phase S. J’ai dĂ©montrĂ© que Cep76 inhibe cette amplification en bloquant la phosphorylation de Plk1 au niveau des centrosomes. D’autre part, Cep76 peut ĂȘtre acĂ©tylĂ©e au site K279 en phase G2, ce qui rĂ©gule nĂ©gativement son activitĂ© et sa phosphorylation sur le site S83. Ces Ă©tudes permettent d'amĂ©liorer notre comprĂ©hension de la biologie des centrosomes et des cils et pourraient conduire au dĂ©veloppement de nouvelles applications diagnostiques et thĂ©rapeutiques.Centrosomes are small organelles that regulate diverse cellular processes such as polarity or mitosis in mammalian cells. They are composed of two centrioles surrounded by a pericentriolar matrix. These centrosomes are the major microtubule organizing centers. Moreover, they promote the formation of cilia, protrusions on the surface of quiescent cells that are critical for signal transduction. A wide variety of human diseases such as cancers or ciliopathies are linked to a malfunction of centrosomes and cilia. Therefore the aim of my research is to understand the mechanisms necessary for the biogenesis and function of centrosomes and cilia. First, I have characterized a novel centrosomal protein called nephrocystin - 5 (NPHP5). This protein is localized, in interphase cells, in the distal region of centrioles. Its depletion inhibits the migration of centrosomes to the cell surface during the early stage of cilia formation. NPHP5 interacts with CEP290 via its C-terminal region that is essential for ciliogenesis. It also interacts with calmodulin, which prevents its self-aggregation. I have demonstrated that the Cep290- and CaM-binding domains as well as the centrosomal localization domain of NPHP5 are separable. Moreover, I have shown that NPHP5 proteins with pathogenic mutations can no longer interact with CEP290 and are not localized to centrosomes, rendering these proteins non-functional. Finally, using a pharmacological approach to modulate the downstream events in the ciliogenic pathway, I showed that cilia formation can be restored even without NPHP5. On the other hand, I studied the role of NPHP5 in the assembly and trafficking of the BBSome into the cilium. The BBSome consists of eight different subunits that assemble into a functional complex of which little is known about the spatiotemporal regulation of its assembly process. I have previously shown that NPHP5 favored the formation of cilia and its dysfunction contributes to the development of nephronophthisis (NPHP). Although the NPHP and BBS syndrome (BBS) are ciliopathies that share common clinical features, molecular basis of these phenotypic similarities is not understood. I found that NPHP5, located at the base of the cilium, contains two separate binding sites for BBSome. Furthermore, I demonstrated that NPHP5 and his partner CEP290 interact dynamically with the BBSome during the transition from quiescence to proliferation. Depletion NPHP5 or CEP290 leads to the dissociation of at least two subunits of BBSome forming a sub-complex that can still traffic into the cilium. I have shown that the transport of cargo to the ciliary compartment through this sub-complex is only partially altered. Finally, I have also focused my research on another centrosomal protein poorly characterized. The centrosomal protein of 76 kDa (Cep76) was previously involved in the maintenance of a single duplication of centrioles per cell cycle, and interacts with the cyclindependent kinase 2 (CDK2). Cep76 is preferentially phosphorylated by cyclin A/CDK2 on the single site S83. This event is essential to suppress centrioles amplification in S phase. I have demonstrated that Cep76 inhibits amplification by blocking the phosphorylation of Plk1 at the centrosome. Moreover, Cep76 can be acetylated at the K279 site in G2 phase, which negatively regulates its activity and phosphorylation on the site S83. These studies will improve our understanding of the biology of centrosomes and cilia and could lead to development of new diagnostic and therapeutic applications

    Mutations specific to the Rac-GEF domain of <i>TRIO</i> cause intellectual disability and microcephaly

    Get PDF
    Background: Neurodevelopmental disorders have challenged clinical genetics for decades, with over 700 genes implicated and many whose function remains unknown. The application of whole-exome sequencing is proving pivotal in closing the genotype/phenotype gap through the discovery of new genes and variants that help to unravel the pathogenic mechanisms driving neuropathogenesis. One such discovery includes TRIO, a gene recently implicated in neurodevelopmental delay. Trio is a Dbl family guanine nucleotide exchange factor (GEF) and a major regulator of neuronal development, controlling actin cytoskeleton dynamics by activating the GTPase Rac1.Methods: Whole-exome sequencing was undertaken on a family presenting with global developmental delay, microcephaly and mild dysmorphism. Father/daughter exome analysis was performed, followed by confirmatory Sanger sequencing and segregation analysis on four individuals. Three further patients were recruited through the deciphering developmental disorders (DDD) study. Functional studies were undertaken using patient-specific Trio protein mutations.Results: We identified a frameshift deletion in TRIO that segregated autosomal dominantly. By scrutinising data from DDD, we further identified three unrelated children with a similar phenotype who harboured de novo missense mutations in TRIO. Biochemical studies demonstrated that in three out of four families, the Trio mutations led to a markedly reduced Rac1 activation.Conclusions: We describe an inherited global developmental delay phenotype associated with a frameshift deletion in TRIO. Additionally, we identify pathogenic de novo missense mutations in TRIO associated with the same consistent phenotype, intellectual disability, microcephaly and dysmorphism with striking digital features. We further functionally validate the importance of the GEF domain in Trio protein function. Our study demonstrates how genomic technologies are yet again proving prolific in diagnosing and advancing the understanding of neurodevelopmental disorders.<br/

    Mapping Neurogenesis Onset in the Optic Tectum of Xenopus Laevis

    Get PDF
    Neural progenitor cells have a central role in the development and evolution of the vertebrate brain. During early brain development, neural progenitors first expand their numbers through repeated proliferative divisions and then begin to exhibit neurogenic divisions. The transparent and experimentally accessible optic tectum of Xenopus laevis is an excellent model system for the study of the cell biology of neurogenesis, but the precise spatial and temporal relationship between proliferative and neurogenic progenitors has not been explored in this system. Here we construct a spatial map of proliferative and neurogenic divisions through lineage tracing of individual progenitors and their progeny. We find a clear spatial separation of proliferative and neurogenic progenitors along the anterior-posterior axis of the optic tectum, with proliferative progenitors located more posteriorly and neurogenic progenitors located more anteriorly. Since individual progenitors are repositioned toward more anterior locations as they mature, this spatial separation likely reflects an increased restriction in the proliferative potential of individual progenitors. We then examined whether the transition from proliferative to neurogenic behavior correlates with cellular properties that have previously been implicated in regulating neurogenesis onset. Our data reveal that the transition from proliferation to neurogenesis is associated with a small change in cleavage plane orientation and a more pronounced change in cell cycle kinetics in a manner reminiscent of observations from mammalian systems. Our findings highlight the potential to use the optic tectum of Xenopus laevis as an accessible system for the study of the cell biology of neurogenesis. This article is protected by copyright. All rights reserved

    Molecular and Cellular Basis of Autosomal Recessive Primary Microcephaly

    No full text
    Autosomal recessive primary microcephaly (MCPH) is a rare hereditary neurodevelopmental disorder characterized by a marked reduction in brain size and intellectual disability. MCPH is genetically heterogeneous and can exhibit additional clinical features that overlap with related disorders including Seckel syndrome, Meier-Gorlin syndrome, and microcephalic osteodysplastic dwarfism. In this review, we discuss the key proteins mutated in MCPH. To date, MCPH-causing mutations have been identified in twelve different genes, many of which encode proteins that are involved in cell cycle regulation or are present at the centrosome, an organelle crucial for mitotic spindle assembly and cell division. We highlight recent findings on MCPH proteins with regard to their role in cell cycle progression, centrosome function, and early brain development
    • 

    corecore