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ABSTRACT 

Neural progenitor cells have a central role in the development and evolution of 

the vertebrate brain. During early brain development, neural progenitors first 

expand their numbers through repeated proliferative divisions and then begin 

to exhibit neurogenic divisions. The transparent and experimentally accessible 

optic tectum of Xenopus laevis is an excellent model system for the study of 

the cell biology of neurogenesis, but the precise spatial and temporal 

relationship between proliferative and neurogenic progenitors has not been 

explored in this system. Here we construct a spatial map of proliferative and 

neurogenic divisions through lineage tracing of individual progenitors and their 

progeny. We find a clear spatial separation of proliferative and neurogenic 

progenitors along the anterior-posterior axis of the optic tectum, with 

proliferative progenitors located more posteriorly and neurogenic progenitors 

located more anteriorly. Since individual progenitors are repositioned toward 

more anterior locations as they mature, this spatial separation likely reflects 

an increased restriction in the proliferative potential of individual progenitors. 

We then examined whether the transition from proliferative to neurogenic 

behavior correlates with cellular properties that have previously been 

implicated in regulating neurogenesis onset. Our data reveal that the 

transition from proliferation to neurogenesis is associated with a small change 

in cleavage plane orientation and a more pronounced change in cell cycle 

kinetics in a manner reminiscent of observations from mammalian systems. 

Our findings highlight the potential to use the optic tectum of Xenopus laevis 

as an accessible system for the study of the cell biology of neurogenesis.  
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INTRODUCTION 

During vertebrate neurogenesis, progenitor cells are initially organized in a 

single layer of neuroepithelial cells that lines the brain ventricle. Progenitors 

display radial morphology with processes extending to both the pial and 

ventricular surfaces. In contrast, newborn neurons retract their radial 

processes, migrate away from the ventricular surface and start to develop 

neurites. Early during brain development, neural progenitors increase their 

numbers through repeated proliferative divisions. Later on, progenitors switch 

to neurogenic divisions. This transition must be finely tuned to ensure normal 

brain development (Taverna et al. 2014).  

The external development and transparency of Xenopus laevis 

embryos makes them an ideal model system for studying brain development 

in real time, in a live and intact vertebrate. Time-lapse imaging has been used 

extensively to study certain aspects of neural development in the Xenopus 

laevis optic tectum, such as the formation of retinotectal synapses (Sanchez 

et al. 2006, Chiu et al. 2008, Schwartz et al. 2009, Chen et al. 2010, Li et al. 

2011) and the development of dendritic morphology ( Sin et al. 2002, Haas et 

al. 2006, Ewald et al. 2008, Van Keuren-Jensen and Cline 2008, Bestman 

and Cline 2008, Shen et al. 2009, Schwartz et al. 2009, Liu et al. 2009, Chen 

et al. 2010). However, much less is known about the cell biology of the tectal 
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progenitors that generate these neurons. While it has been shown that radial 

progenitor cells in the optic tectum can undergo both proliferative and 

neurogenic divisions, and that they can also differentiate directly into neurons 

(Bestman et al. 2012), the spatial and temporal relationship between 

proliferative and neurogenic progenitors has not been explored at the level of 

individual cells. 

Given its importance for brain development and evolution, the 

regulation of the transition from proliferation to neurogenesis is a topic of great 

interest in neurobiology. Experimental evidence supports a role for a wide 

range of cell biological mechanisms in determining the fate of daughter cells 

from divisions of neural progenitors. These include, but are not limited to, the 

asymmetric inheritance of cell fate determinants, cell cycle kinetics, 

interkinetic nuclear migration, feedback signaling from neurons, and a number 

of extracellular signaling pathways (Willardsen and Link 2011, Paridaen and 

Huttner 2014, Taverna et al. 2014). Research in Xenopus has demonstrated 

that parameters such as visual activity (Sharma and Cline 2010), epigenetic 

modifications (Tao et al. 2015) and Fragile X Mental Retardation Protein 

expression (Faulkner et al. 2015) can play a role in the regulation of 

neurogenesis in the optic tectum. It is likely that these mechanisms cooperate 

and interact to influence cell fate, potentially over several cell cycles 

(Willardsen and Link 2011). 

Here we explore the spatial and temporal relationship between 

proliferative and neurogenic progenitors in the developing optic tectum of 

Xenopus laevis through electroporation of individual neural progenitors, 

followed by lineage tracing of the progenitors and their progeny over several 
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days. We find that proliferative and neurogenic progenitors are spatially 

separated along the anterior-posterior axis of the optic tectum. Proliferative 

progenitors reside in the posterior tectum, while neurogenic progenitors are 

located more anteriorly. This separation of proliferative and neurogenic 

progenitors in space likely reflects the transition from proliferation to 

neurogenesis in time. In addition, we investigated the spatial distribution of 

cleavage plane orientation and cell cycle kinetics in neural progenitors - two 

cell biological parameters that have been proposed to play a role in cell fate 

determination during neurogenesis. Our data indicate that changes in both of 

these parameters are associated with the transition from proliferation to 

neurogenesis in tectal neural progenitors, with the change in cell cycle 

kinetics concomitant with neurogenesis onset being somewhat more 

pronounced than that in cleavage plane orientation. 

 

 

METHODS 

Animals 

Wild-type Xenopus laevis tadpoles were reared on a 14 hour light/10 hour 

dark cycle at 15-21 °C in Modified Barth’s Solution (MBS). Reagents were 

supplied by Sigma unless otherwise stated. To inhibit melanogenesis, the 

rearing solution also contained 100 µM N-Phenylthiourea. Tadpoles were 

staged according to established morphological criteria (Nieuwkoop and Faber 

1994), and experiments were carried out between stages 45 and 48. All 

animal procedures were conducted in accordance with UK Home Office 
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regulations. Some animals were incubated in 10 mM BrdU in rearing solution 

for 2-30 hours before fixation and processing for immunohistochemistry. 

 

Single-cell electroporation of tectal cells 

We used single-cell electroporation of fluorescently labeled dextran to label 

individual radial and non-radial cells and characterize their neurogenic 

behavior (Haas et al. 2001, Bestman et al. 2006, Muldal et al. 2014, Herrgen 

et al. 2014). Animals were anaesthetized by immersion in MBS containing 

0.01% Ethyl 3-aminobenzoate methansulfonate (MS-222). A glass 

micropipette containing 5 mg/ml Oregon Green 10,000 MW dextran (Life 

Technologies) in calcium-free Ringer’s solution was positioned near or on the 

ventricular surface of the optic tectum. Cells were electroporated by delivering 

a short train of electrical pulses of 1-5 V using an Axoporator 800A (Molecular 

Devices). The labeling of individual cells was confirmed 1-3 hours after 

electroporation. Tadpoles with single cells were returned to rearing solution. 

They were then repeatedly imaged over 1-3 days, or allowed to develop for 

1-3 days before fixation and processing for immunohistochemistry. To 

determine how individual progenitors change their positions relative to the 

heel and to each other over time, several cells were labeled within the same 

animal. Labeling was confirmed 1 hour after electroporation, and cells were 

repeatedly imaged over 3 days. 

 

Nuclear and F-actin staining 

Animals were euthanized in 2% MS-222 and fixed in 4% paraformaldehyde 

for 12-16 hours at 4 °C. After fixation, brains were excised, rinsed in 

Page 6 of 38

John Wiley & Sons, Inc.

Developmental Neurobiology

This article is protected by copyright. All rights reserved.



 7

phosphate buffered saline (PBS), permeabilized for 1-4 hours at room 

temperature in PBS with 0.5% Triton X-100, rinsed in PBS and incubated in 

50 µg/ml fluorescein isothiocyanate labeled phalloidin in PBS for 12-16 hours 

at 4 °C. Brains were then rinsed in PBS, incubated in PBS with 1 µg/ml 

propidium iodide (Invitrogen) and 100 µg/ml RNAse A (Roche) for 30 minutes 

at 37 °C and again rinsed in PBS before mounting and imaging. 

 

Immunohistochemistry 

Animals were euthanized in 2% MS-222 and fixed in 4% paraformaldehyde 

for 12-16 hours at 4 °C. After fixation, brains were excised, rinsed in PBS, 

blocked for 1-4 hours at room temperature in PBS with 1% BSA, 1% DMSO, 

0.5% Triton X-100 and 0.01% sodium azide, and incubated in primary 

antibody in blocking solution for 12-16 hours at 4 °C. Primary antibodies used 

were mouse anti-HuC/D antibody (1:200, Life Technologies), mouse anti-

BrdU antibody (1:500), and rabbit anti-phospho-histone H3 (Ser10) antibody 

(1:1000, Millipore). Brains were rinsed in PBS with 0.5% Triton X-100 for 

2-4 hours at room temperature, incubated in secondary antibody in blocking 

solution for 12-16 hours at 4 °C, and rinsed in PBS. Secondary antibodies 

used were Alexa Fluor 488 goat anti-mouse antibody (1:500, Life 

Technologies) and Alexa Fluor 488 goat anti-rabbit antibody (1:500, Life 

Technologies). For detection of cell nuclei, brains were incubated in PBS with 

1 µg/ml propidium iodide and 100 µg/ml RNAse A (Roche) for 30 minutes at 

37 °C and rinsed in PBS before mounting and imaging. 
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Image acquisition and analysis 

Images were collected on a confocal microscope with 488 nm and 543 nm 

lasers, a ×60 0.9 NA LUMPlanFl/IR objective (Olympus) and Fluoview FV300 

image acquisition software (Olympus). Images were analyzed in ImageJ 

(http://rsbweb.nih.gov/ij) and figures were assembled in Adobe Illustrator 

(Adobe). In some images the contrast was varied across different parts of an 

individual cell, in order to facilitate visualization of both the cell body and the 

radial processes or neurites (Fig. 2). The position of the heel was defined as 

the most posterior-lateral point of the ventricular surface of the tectum, which 

in most animals is also the point of strongest inflection along the ventricular 

wall. The heel was assigned a value of 0 µm along the anterior-posterior axis 

of the optic tectum, with locations posterior and anterior to the heel being 

assigned negative and positive values, respectively. 

To determine the apical-basal and anterior-posterior location of dividing 

cells, mitotic cells were visualized in z stacks of confocal images (1 µm 

intervals between optical planes) after staining for F-actin and cell nuclei. The 

position of each mitotic cell was identified manually and the cell’s coordinates 

within the tectum were calculated using a custom-written script in MATLAB 

(Mathworks). 

To track the behavior of individual radial cells labeled with fluorescent 

dextran, z stacks of confocal images (2 µm intervals between optical planes) 

were taken each day, for at least 3 days, starting on the day of 

electroporation. A cell's location on the anterior-posterior axis was measured 

as the distance along the ventricular wall, between the cell’s apical endfoot 

and the heel. 
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To measure cleavage plane orientation, mitotic cells were visualized in 

z stacks of confocal images (1 µm intervals between optical planes), after 

staining for F-actin and cell nuclei. Only cells whose sister chromatids 

appeared similar in size and shape in consecutive optical sections were 

included in the analysis. The cleavage angle was calculated as the mean of 

the angles between each of the sister chromatids and the ventricular surface. 

A cell's location on the anterior-posterior axis was measured as the distance 

along the ventricular wall between the heel and the dividing cell. Based on the 

time-lapse imaging of individual progenitors, cells posterior to a position of 

0 µm along the anterior-posterior axis were considered to reside in the 

proliferative region, while those anterior of this position were considered to be 

within the neurogenic region. A radial line from the heel through the tissue 

was defined as the boundary between the posterior and anterior parts of the 

optic tectum. 

The spatial distribution of the early neuronal marker HuC/D+ cells was 

investigated in z stacks of confocal images (2 µm intervals between optical 

planes), taken after staining for HuC/D and cell nuclei. The position of each 

HuC/D+ cell was identified manually and the cell’s coordinates within the 

tectum were calculated using a custom-written script in MATLAB. 

To determine the BrdU labeling index and the proportion of cells in G2 

phase or M phase, BrdU+ or phospho-histone H3+ cells were visualized in 

z stacks of confocal images (5 µm intervals between optical planes). The 

number of BrdU+ or phospho-histone H3+ cells, and the total number of cells 

(from cell nuclei staining), were determined manually in the most dorsal 

optical section that showed a clear outline of the ventricular wall. 
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Calculation of cell cycle phases 

Calculation of the length of the cell cycle (TC), the length of S phase (TS), and 

the growth fraction (GF), which is the fraction of proliferating cells within a cell 

population, was performed by nonlinear regression analysis of cumulative 

BrdU labeling curves as described previously (Nowakowski et al. 1989) using 

an Excel spreadsheet kindly provided by Prof Richard S. Nowakowski. Briefly, 

the algorithm embedded in the spreadsheet calculates the intercept of the 

BrdU labeling curve with the y-axis (a), the time needed to reach maximum 

BrdU labeling (b), and GF through nonlinear regression. Importantly, the 

parameter a correlates with TS/TC, and the parameter b corresponds to TC - TS 

(Nowakowski et al. 1989). Determining the parameters a, b, and GF by 

nonlinear regression analysis therefore allows us to solve the equations 

(TS/TC) GF = a and TC - TS = b, whereby we obtain TC and TS (Nowakowski et 

al. 1989). 

We used phospho-histone H3 (Ser10) staining to determine the 

combined length of G2 phase and M phase (TG2+M) based on reports that 

histone H3 is phosphorylated on serine 10 during G2 phase and M phase 

(Gurley et al. 1978, Paulson and Taylor 1982, Hendzel et al. 1997). We 

reasoned that the fraction of the total number of cells that stain for phospho-

histone H3 would correspond to the fraction of the length of the cell cycle that 

cells spend in G2 phase and M phase. To obtain TG2+M we therefore divided 

the number of phospho-histone H3+ cells by the total number of cells in the 

population (calculated from cell nuclei staining) and then normalized this value 

by GF, to account for the existence of non-cycling cells within the population. 

The fraction we obtained was then multiplied by TC to yield TG2+M, and the 
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length of G1 phase (TG1) was calculated by subtracting TS and TG2+M from TC. 

 

Statistical methods 

All population data are presented as mean ± sem. Statistical tests were 

carried out as stated in the figure legends using Prism (GraphPad Software). 

 

 

RESULTS 

The majority of neural progenitors in the developing optic tectum of Xenopus 

laevis divides apically  

The optic tectum is a major component of the midbrain in Xenopus laevis 

(Fig. 1A) and grows by addition of neurons from a posterior-lateral 

neuroepithelium (Straznicky and Gaze 1972, Lázár 1973). This 

neuroepithelium is located around the heel of the tectum, defined as the most 

posterior-lateral point along the ventricular surface, which is usually also the 

point of strongest inflection of the ventricular wall (Fig. 1B; see Methods). In 

the developing mammalian brain, neural progenitors can divide apically or 

basally within the neuroepithelium, and it is thought that apical and basal 

progenitors have different lineage potentials (Taverna et al. 2014). To 

investigate the existence of differentially localized pools of progenitors in the 

optic tectum, we stained cell nuclei and F-actin (Fig. 1C) and determined the 

apical-basal position of mitotic cells within the neuroepithelium (Fig. 1D). We 

found that 92% of dividing cells (49/53) were situated within one cell diameter 

of the ventricular surface, whereas the remaining 8% of cells (4/53) were 

located between one and two cell diameters away from the ventricular 
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surface. We did not detect any dividing cells (0/53) whose distance to the 

ventricular surface was greater than two cell diameters (n = 10 animals). 

These results show that the tectal progenitor pool is predominantly made up 

of progenitors that divide apically, at the ventricular surface. The small 

number of progenitors that does not divide apically nevertheless divides in 

close proximity to the ventricular surface. 

 

Long-term in vivo time-lapse imaging can be used to trace individual neural 

progenitors and their progeny over several days 

Next, we characterized tectal progenitors according to their neurogenic 

behavior. We used single-cell electroporation of fluorescently labeled dextran 

to label individual progenitors within the optic tectum. Electroporated cells 

were then followed over several days by long-term in vivo time-lapse imaging 

(Haas et al. 2001, Bestman et al. 2006). This allowed us to assess the fate of 

daughter cells from individual progenitors in the optic tectum (Muldal et al. 

2014, Herrgen et al. 2014). We electroporated and followed a total of 49 tectal 

radial progenitors, which could exhibit four different types of behavior. We 

found that 29% of radial cells (14/49) underwent proliferative symmetric 

division (Fig. 2A-C), where one progenitor generates two progenitors. Radial 

cells could also exhibit one of three types of neurogenic behavior. We 

detected neurogenic asymmetric division, which gives rise to one progenitor 

and one neuron (Fig. 2D-F), in 16% of radial cells (8/49), and found that 29% 

of radial cells (14/49) underwent neurogenic symmetric division, which 

generates two neurons (Fig. 2G-I). In addition, we identified 26% of radial 

cells (13/49) as displaying direct neuronal differentiation, where a progenitor 
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becomes a neuron without dividing (Fig. 2J-L). Direct neuronal differentiation 

of radial cells has previously been observed in the Xenopus optic tectum 

(Bestman et al. 2012).  

As we had detected a few progenitors that do not divide at the 

ventricular surface but slightly away from it (Fig. 1D), we were wondering 

whether these cells might be basal progenitors. To qualify as a basal 

progenitor, a cell needs to divide away from the ventricular wall, and also 

needs to have lost apical contact and therefore have become non-radial. To 

investigate whether we could detect any basal progenitors in the optic tectum, 

we delivered fluorescent dextrans to non-radial cells through single-cell 

electroporation (Fig. 2M) and then followed these cells over several days to 

determine whether they would divide (Fig. 2N,O). We found that 0% of non-

radial cells (0/11) divided, whereas 100% of cells (11/11) started to develop 

neurites. These results suggest that all non-radial cells that we analyzed were 

newborn neurons rather than basal progenitors. Likewise, 0% of non-radial 

cells (0/8) generated by asymmetric divisions divided, while 100% of these 

cells (8/8) started to develop neurites, again indicating that these are newborn 

neurons. Taken together, we did not find evidence supporting the existence of 

a sizeable pool of basal progenitors in the optic tectum. Interestingly, even 

progenitors that did not divide directly on the ventricular surface resided no 

more than two cell diameters away from the ventricular surface, raising the 

possibility that they might be ectopically dividing apical progenitors. 

  

Proliferative and neurogenic divisions are spatially separated in the 

developing optic tectum  
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By relating a cell's behavior to its anterior-posterior position relative to the 

heel on the day of electroporation, we were able to construct a map of 

progenitor cell behaviors in the optic tectum. Importantly, this revealed a clear 

spatial separation of proliferative and neurogenic behavior along the anterior-

posterior axis (Fig. 3A). This spatial transition correlates closely with the 

location of the heel (Fig. 1B) and so to quantify the change from proliferative 

to neurogenic behavior, we defined the position of the heel as 0 µm along the 

anterior-posterior axis of the optic tectum. This confirmed that proliferative 

divisions occur at more posterior positions, whereas neurogenic divisions take 

place at more anterior positions within the neuroepithelium (Fig. 3B).  

During development, the posterior margin of the tectum is displaced 

toward progressively more posterior locations as a result of tectal growth 

(Straznicky and Gaze 1972, Lázár 1973). Therefore, individual cells are 

repositioned toward more anterior locations relative to the heel over time, 

creating the impression that progenitors move in an anterior direction (Fig. 2). 

It is important to note that progenitors maintain their positions within the tissue 

and relative to each other during development despite this apparent 

movement. To directly confirm this, we electroporated several progenitors at 

different anterior-posterior locations and followed them and their progeny over 

several days (Fig. 4A-C). Indeed, this revealed that progenitors and their 

progeny are repositioned toward more anterior locations relative to the heel, 

while maintaining their positions relative to each other (Fig. 4D).  

Given this anterior repositioning over time, it is likely that the spatial 

separation of proliferative divisions and neurogenic behavior reflects a 

progressive restriction in the proliferative potential of individual progenitors. 
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This means that at any particular stage of development, the maturational 

stage of a tectal progenitor is reflected by its position along the anterior-

posterior axis of the tectum.  

 

The transition from proliferative to neurogenic behavior is associated with the 

expression of the early neuronal marker HuC/D 

We then investigated whether the transition from proliferative to neurogenic 

behavior identified by in vivo time-lapse imaging is recapitulated at the gene 

expression level. Using the early neuronal marker HuC/D, we did not detect 

any neurons in the proliferative region. However, HuC/D+ newborn neurons 

were identified within the neurogenic region of the neuroepithelium 

(Fig. 5A,B). Indeed, the distribution of cells with neurogenic behavior closely 

paralleled the distribution of HuC/D+ cells along the anterior-posterior axis of 

the neuroepithelium (Fig. 5C). The anterior shift of the HuC/D distribution 

relative to the distribution of cells with neurogenic behavior is consistent with 

anterior repositioning of newborn neurons relative to the heel as they start to 

differentiate and express HuC/D. To confirm the equivalence of results 

obtained from long-term in vivo time-lapse imaging and HuC/D staining at the 

level of individual cells, we assessed HuC/D expression in radial or non-radial 

cells labeled by single-cell electroporation (Fig. 5D). This revealed that 0% of 

radial cells (0/23) but 100% of non-radial cells (14/14) expressed HuC/D 

(Fig. 5E). The strong correlation between these parameters (n = 9 animals, 

p < 0.01 in Fisher's exact test) confirmed that HuC/D expression recapitulates 

neurogenic behavior as assessed by long-term in vivo time-lapse imaging. 
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Mapping the spatial distribution of cleavage plane orientation shows that 

cleavage angles vary along the anterior-posterior axis 

To further characterize neurogenesis in the Xenopus laevis optic tectum, we 

were keen to explore the spatial distribution of cell biological parameters that 

have previously been associated with the onset of neurogenesis. One such 

parameter is the orientation of the cleavage plane in dividing progenitors. 

Planar divisions, in which the cleavage plane is oriented between 60º and 90º 

to the ventricular surface, are believed to be symmetric and generate two 

identical daughters - either progenitors or neurons. Conversely, oblique or 

vertical divisions, in which the cleavage plane is between 0º and 60º, are 

believed to be asymmetric and produce one progenitor and one neuron 

(Chenn and McConnell 1995). This causal relationship was proposed to 

originate from equal or unequal partitioning of cell fate determinants that are 

differentially distributed along a cell's apical-basal axis (Kosodo et al. 2004). 

Consistent with this, the overall number of vertical divisions increases during 

neurogenesis (Haydar et al. 2003). 

We were interested to see whether any correlation exists between the 

spatial distribution of cleavage angles and the spatial distribution of 

proliferative and neurogenic progenitors in the optic tectum. We measured 

cleavage angles in brains stained for cell nuclei and F-actin and found that 

they ranged from 0º to 90º (Fig. 6A-D). Almost all divisions in the proliferative 

region of the optic tectum were planar (Fig. 6E,F). Most divisions in the 

neurogenic region were also planar, however we did detect an increase in the 

proportion of oblique and vertical divisions (Fig. 6E,F). Interestingly, the 

location of the first oblique and vertical divisions correlated with the spatial 
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position of the first neurogenic divisions (Fig. 6E). Taken together, these data 

show that while the onset of neurogenesis is associated with a small increase 

in oblique and vertical divisions, most progenitors undergo planar divisions 

irrespective of their location along the anterior-posterior axis of the optic 

tectum. 

 

Mapping cell cycle parameters shows that cell cycle length is dynamically 

regulated along the anterior-posterior axis 

Another model that has been put forward to account for the transition from 

proliferation to neurogenesis is the so-called cell cycle length hypothesis, 

which postulates that the length of the G1 phase of the cell cycle can 

influence cell fate choice (Calegari and Huttner 2003, Borrell and Calegari 

2014, Hardwick et al. 2015). This hypothesis was initially based on the 

observation that TG1 increases as development proceeds and more 

progenitors transition from proliferation to neurogenesis (Takahashi et al. 

1995). Consistent with this, progenitors in brain regions with a higher 

proportion of neurogenic divisions display a longer G1 phase (Lukaszewicz et 

al. 2005), and neurogenic progenitors are characterized by a longer G1 phase 

than proliferative progenitors within the same brain region (Calegari et al. 

2005). 

To investigate whether there are any changes in cell cycle kinetics that 

correlate with the spatial separation of proliferative and neurogenic 

progenitors, we compared cell cycle parameters in the proliferative and 

neurogenic regions of the developing optic tectum. The length of the cell cycle 

and the length of S phase can be calculated using cumulative BrdU labeling 
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(Nowakowski et al. 1989). Animals were incubated in the presence of BrdU for 

varying amounts of time (Fig. 7A-H). We then determined the proportion of 

BrdU+ cells within proliferative and neurogenic regions at different time points, 

and calculated TC and TS from the resulting cumulative labeling curves 

(Fig. 7I; see Methods). We found that TC was longer in the neurogenic region 

than in the proliferative region, while TS was shorter (Fig. 7J). Our 

measurements indicated that TC in the neurogenic region is approximately 

25 hours, which is consistent with previous results from the anterior optic 

tectum of Xenopus (Sharma and Cline 2010). To determine TG2+M, we used 

phospho-histone H3 immunostaining (Fig. 7K,L; see Methods). Histone H3 is 

phosphorylated on serine 10 during G2 phase and M phase (Gurley et al. 

1978, Paulson and Taylor 1982, Hendzel et al. 1997). Therefore, the ratio of 

the number of phospho-histone H3+ cells to the total number of proliferating 

cells reflects the ratio of TG2+M to TC. We found that the length of TG2+M did not 

differ between the proliferative and neurogenic regions. In combination, these 

results allowed us to estimate the length of TG1, which revealed that TG1 was 

more than twice as long in the neurogenic region compared to the proliferative 

region (Fig. 7M; see Methods). These results suggest that cell cycle 

parameters vary dynamically along the anterior-posterior axis of the optic 

tectum. 

 

 

DISCUSSION 

The timing of the transition from proliferative to neurogenic divisions in neural 

progenitors determines the number of neurons in the mature brain. Premature 
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neurogenesis onset underlies developmental disorders such as microcephaly 

(Barbelanne and Tsang 2014). Conversely, delayed neurogenesis onset in 

higher organisms may have contributed to the evolution of complex brain 

structures (Rakic 1995).  

We explored the transition from proliferation to neurogenesis in the 

developing optic tectum of Xenopus laevis embryos, whose external 

development and transparency makes them ideally suited for analysis of the 

cell biology of neurogenesis, in particular for lineage tracing through long-term 

live imaging. We exploited these advantages to construct a spatial map of the 

neurogenic behavior of tectal progenitors. We found a boundary in space 

along the anterior-posterior axis, which separates proliferative progenitors in 

the posterior tectum from neurogenic progenitors in the anterior tectum. This 

likely reflects the transition from proliferation to neurogenesis in time because 

individual progenitors are repositioned relative to the heel toward more 

anterior locations as they develop and mature (Fig. 4). Therefore, the spatial 

position of a tectal progenitor can be used as an indicator of its maturational 

state. We first identified this boundary by mapping the proliferative behavior of 

neural progenitors onto their spatial location through long-term in vivo time 

lapse imaging of individual progenitors over several days. We then confirmed 

that this boundary also manifests at the population level, as shown by HuC/D 

expression.  

Given the clear spatial separation of proliferative and neurogenic 

progenitors, we were keen to explore whether any cell biological parameters 

that have been proposed to play a role in the regulation of neurogenesis onset 

would also vary along the anterior-posterior axis of the tectum. One such 
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parameter is the orientation of the cleavage plane in dividing progenitors, 

which has been proposed to generate symmetric or asymmetric cell fates 

through the equal or unequal partitioning of fate determinants (Kosodo et al. 

2004). Indeed, we found that the transition from proliferative to neurogenic 

divisions is associated with an increase in oblique and vertical divisions 

(Fig. 6E,F). Nonetheless, the majority of divisions across the optic tectum was 

found to be planar. In particular, more than 95% of divisions in the neurogenic 

region generated at least one neuron (Fig. 3), but only 18% of divisions 

displayed vertical or oblique cleavage angles (Fig. 6E,F). This indicates that 

while oblique or vertical orientation of the cleavage plane in dividing neural 

progenitors may be one of the factors contributing to neurogenesis onset in 

the optic tectum, this does not appear to be a requirement for the majority of 

neurogenic divisions. 

Another mechanism that has been implicated in regulating the 

transition from proliferative to neurogenic divisions is an increase in TG1. The 

underlying mechanism has been proposed to be the accumulation of cell fate-

determining differentiation factors, which will only accumulate to levels high 

enough to induce neurogenesis if a cell's G1 phase is longer than a certain 

threshold value (Calegari and Huttner 2003, Borrell and Calegari 2014, 

Hardwick et al. 2015). To determine whether there is any association between 

the length of different phases of the cell cycle and neurogenesis onset in the 

optic tectum, we calculated TC, TS, TG2+M and TG1 in the proliferative and 

neurogenic regions through cumulative BrdU labeling and phospho-histone 

H3 immunostaining. We found that TC and TG1 were longer in the neurogenic 

region, TS was shorter, and we did not detect a difference in the length of 
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TG2+M (Fig. 7J,M). These findings establish an association between the 

proliferative behavior of neural progenitor cells in the optic tectum and the 

length of different phases of their cell cycle. Indeed, the increase in TG1 in 

neurogenic progenitors is reminiscent of the correlation between TG1 and a 

progenitor's maturational state that has been observed in mammalian 

systems (Takahashi et al. 1995, Calegari et al. 2005, Lukaszewicz et al. 

2005). In addition, the decrease in TS in neurogenic progenitors as compared 

to proliferative progenitors that we detected in the optic tectum (Fig. 7J) 

parallels a similar decrease reported in mammalian systems (Arai et al. 2011). 

This decrease in TS has been proposed to reflect the increase in time that 

proliferative progenitors invest in quality control of DNA replication.  

In conclusion, by constructing a map of the distribution of proliferative 

and neurogenic progenitors in the optic tectum of Xenopus laevis using in vivo 

imaging methods, we show that the spatial and temporal relationship between 

progenitors with different proliferative potential can be mapped at the level of 

individual cells in this system. Our observations also indicate that a small 

change in cleavage plane orientation and a more marked difference in cell 

cycle kinetics accompany neurogenesis onset in the optic tectum of Xenopus 

laevis, reminiscent of findings from the developing mammalian brain. 

Therefore, our findings provide further evidence that the Xenopus optic tectum 

represents a simple and tractable model system in which to investigate the 

cell biology underlying vertebrate neurogenesis. 
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FIGURE LEGENDS 

Figure 1  The optic tectum of Xenopus laevis develops from a 

neuroepithelium where the great majority of progenitors divides apically. 

(A) Head of a stage 48 Xenopus laevis. FB, forebrain. MB, midbrain. 

HB, hindbrain. OT, optic tectum. Scale bar represents 200 µm. (B) The 

posterior-lateral region of the optic tectum comprises a neuroepithelium. 

NE, neuroepithelium. P, pia. V, ventricle. Scale bar represents 10 µm. 

(C) Mitotic cells (dashed circle) can be identified after staining for F-actin 

(green) and cell nuclei (magenta). Scale bar represents 10 µm. (D) Summary 

diagram showing the localization of mitotic cells. n = 10 animals. Scale bar 

represents 10 µm. 

 

Figure 2  Single-cell in vivo time-lapse imaging of neural progenitors reveals 

four different types of progenitor cell behavior. Each row of the figure 

comprises three panels showing an animal’s left optic tectum on consecutive 

days. The first image in each row was taken 1-3 h after single-cell 

electroporation. (A-C) A radial progenitor electroporated with fluorescent 

dextran (A) undergoes a proliferative symmetric division and generates two 

radial progenitor cells (B), and further divisions produce four cells (C). Scale 

bars in main panel and inset represent 10 µm and 5 µm, respectively. (D-F) A 

radial progenitor cell (D) undergoes a neurogenic asymmetric division, which 

generates another radial progenitor and a non-radial neuron (E). The newborn 

neuron subsequently migrates away from the ventricular surface (F). (G-I) A 

radial progenitor (G) undergoes a neurogenic symmetric division and 
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generates two non-radial neurons. The newborn neurons then migrate away 

from the ventricular surface (H) and develop neurites (I). (J-K) A radial 

progenitor cell (J) undergoes direct neuronal differentiation by retracting its 

radial processes (K) and developing neurites (L). (M-O) A non-radial cell (M) 

does not divide over several days but instead moves away from the 

ventricular surface (N) and starts to develop neurites (O).  

 

Figure 3  Proliferative and neurogenic progenitors are spatially separated 

along the anterior-posterior axis of the developing optic tectum. 

(A) Progenitors in the posterior part of the tectum undergo proliferative 

divisions, whereas those located more anteriorly generate neurons. The 

positions of cell bodies indicate the apical-basal extent of the neuroepithelium. 

PD, proliferative division. ND, neurogenic division. DD, direct neuronal 

differentiation. n = 42 animals. Scale bar represents 10 µm. (B) Quantification 

of the prevalence of different types of cell behavior within 20 µm bins along 

the ventricular wall. The vertical dashed line indicates the boundary between 

regions of proliferative and neurogenic behavior. P, proliferative. 

N, neurogenic. 

 

Figure 4  Tectal progenitors and their progeny are repositioned relative to the 

heel during development. (A-C) The positions of four radial progenitors (A) 

and their progeny relative to the heel change as they divide (B) and mature 

(C), while their positions relative to each other are maintained. Scale bar 

represents 10 µm. (D) Measurement of the positions of the individual 

progenitors and their progeny in (A-C) relative to the heel over three days.  
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Figure 5  The expression pattern of HuC/D within the neuroepithelium 

parallels the spatial distribution of neurogenic progenitors. (A) The optic 

tectum stained for HuC/D (green) and cell nuclei (magenta). The most 

posteriorly located HuC/D+ cells (arrowheads) are found near the pial surface 

of the neuroepithelium. The vast majority of HuC/D+ cells resides in the 

neuronal layer, which overlies the neuroepithelium in the anterior tectum. 

Scale bar represents 10 µm. (B) HuC/D immunoreactivity from the image 

shown in (A). (C) Quantification of the distribution of neurogenic progenitors 

as assessed by in vivo time-lapse imaging, and quantification of the 

distribution of HuC/D+ cells, along the anterior-posterior axis of the 

neuroepithelium. n = 42 and 41 animals for in vivo time-lapse imaging and 

HuC/D staining, respectively. (D) The optic tectum stained for HuC/D after 

electroporation. The panel is a composite of two images from two different 

animals. Scale bar represents 10 µm. (E) The radial cell does not express 

HuC/D (filled arrowheads), whereas all four non-radial cells express HuC/D 

(open arrowheads). SCE, single-cell electroporation. Scale bar represents 

10 µm. 

 

Figure 6  Neural progenitor divisions are predominantly planar but oblique 

and vertical divisions are increased in the neurogenic region of the optic 

tectum. (A,C) The optic tectum stained for F-actin (green) and cell nuclei 

(magenta), revealing planar (A) and vertical (C) progenitor divisions. Scale bar 

represents 5 µm. (B,D) Higher magnification images of the dividing cells in (A) 

and (C). Scale bar represents 2 µm. (E) Distribution of cleavage angle 

orientation along the anterior-posterior axis of the optic tectum. 
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n = 76 animals. (F) The majority of divisions are planar, although there is an 

increase in the proportion of oblique and vertical divisions in the neurogenic 

region. *, p < 0.05 in Fisher's exact test. 

 

Figure 7  The length of the cell cycle, S phase and G1 phase differ between 

proliferative and neurogenic regions of the optic tectum. (A-D) The optic 

tectum stained for BrdU (green) and cell nuclei (magenta) after 2 hours (A), 

6 hours (B), 14 hours (C) and 30 hours (D) of incubation with BrdU. 

P, proliferative region. N, neurogenic region. Scale bar represents 10 µm. 

(E-H) BrdU immunoreactivity from the images shown in (A-D). 

(I) Quantification of the fraction of BrdU+ cells over time in the proliferative and 

neurogenic regions. n = 22 animals. (J) Length of cell cycle (left) and length of 

S phase (right) in proliferative and neurogenic regions. (K) The optic tectum 

stained for phospho-histone H3 (green) and cell nuclei (magenta). Phospho-

histone H3+ cells (arrowheads) exhibited clear somatic labeling and reside 

near the ventricular wall. In contrast, staining in the neuronal region is not 

associated with cell somata. n = 6 animals. Scale bar represents 10 µm. 

(L) Phospho-histone H3 immunoreactivity from the image shown in (K). 

(M) Combined length of G2 phase and M phase (left) and length of G1 phase 

(right) in proliferative and neurogenic regions. All population data are 

displayed as mean ± sem. **, p < 0.01 in unpaired t-test with Welch's 

correction. 
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Figure 1  The optic tectum of Xenopus laevis develops from a neuroepithelium where the great majority of 
progenitors divides apically. (A) Head of a stage 48 Xenopus laevis. FB, forebrain. MB, midbrain. HB, 
hindbrain. OT, optic tectum. Scale bar represents 200 µm. (B) The posterior-lateral region of the optic 

tectum comprises a neuroepithelium. NE, neuroepithelium. P, pia. V, ventricle. Scale bar represents 10 µm. 
(C) Mitotic cells (dashed circle) can be identified after staining for F-actin (green) and cell nuclei (magenta). 
Scale bar represents 10 µm. (D) Summary diagram showing the localization of mitotic cells. n = 10 animals. 

Scale bar represents 10 µm.  
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Figure 2  Single-cell in vivo time-lapse imaging of neural progenitors reveals four different types of 
progenitor cell behavior. Each row of the figure comprises three panels showing an animal’s left optic tectum 
on consecutive days. The first image in each row was taken 1-3 h after single-cell electroporation. (A-C) A 

radial progenitor electroporated with fluorescent dextran (A) undergoes a proliferative symmetric division 
and generates two radial progenitor cells (B), and further divisions produce four cells (C). Scale bars in main 

panel and inset represent 10 µm and 5 µm, respectively. (D-F) A radial progenitor cell (D) undergoes a 
neurogenic asymmetric division, which generates another radial progenitor and a non-radial neuron (E). The 
newborn neuron subsequently migrates away from the ventricular surface (F). (G-I) A radial progenitor (G) 
undergoes a neurogenic symmetric division and generates two non-radial neurons. The newborn neurons 
then migrate away from the ventricular surface (H) and develop neurites (I). (J-K) A radial progenitor cell 
(J) undergoes direct neuronal differentiation by retracting its radial processes (K) and developing neurites 

(L). (M-O) A non-radial cell (M) does not divide over several days but instead moves away from the 
ventricular surface (N) and starts to develop neurites (O).  
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Figure 3  Proliferative and neurogenic progenitors are spatially separated along the anterior-posterior axis of 
the developing optic tectum. (A) Progenitors in the posterior part of the tectum undergo proliferative 

divisions, whereas those located more anteriorly generate neurons. The positions of cell bodies indicate the 
apical-basal extent of the neuroepithelium. PD, proliferative division. ND, neurogenic division. DD, direct 

neuronal differentiation. n = 42 animals. Scale bar represents 10 µm. (B) Quantification of the prevalence of 
different types of cell behavior within 20 µm bins along the ventricular wall. The vertical dashed line 
indicates the boundary between regions of proliferative and neurogenic behavior. P, proliferative. N, 

neurogenic.  
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Figure 4  Tectal progenitors and their progeny are repositioned relative to the heel during development. (A-
C) The positions of four radial progenitors (A) and their progeny relative to the heel change as they divide 
(B) and mature (C), while their positions relative to each other are maintained. Scale bar represents 10 µm. 
(D) Measurement of the positions of the individual progenitors and their progeny in (A-C) relative to the heel 

over three days.  
45x10mm (300 x 300 DPI)  
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Figure 5  The expression pattern of HuC/D within the neuroepithelium parallels the spatial distribution of 
neurogenic progenitors. (A) The optic tectum stained for HuC/D (green) and cell nuclei (magenta). The most 
posteriorly located HuC/D+ cells (arrowheads) are found near the pial surface of the neuroepithelium. The 

vast majority of HuC/D+ cells resides in the neuronal layer, which overlies the neuroepithelium in the 
anterior tectum. Scale bar represents 10 µm. (B) HuC/D immunoreactivity from the image shown in (A). (C) 
Quantification of the distribution of neurogenic progenitors as assessed by in vivo time-lapse imaging, and 
quantification of the distribution of HuC/D+ cells, along the anterior-posterior axis of the neuroepithelium. n 
= 42 and 41 animals for in vivo time-lapse imaging and HuC/D staining, respectively. (D) The optic tectum 
stained for HuC/D after electroporation. The panel is a composite of two images from two different animals. 
Scale bar represents 10 µm. (E) The radial cell does not express HuC/D (filled arrowheads), whereas all four 
non-radial cells express HuC/D (open arrowheads). SCE, single-cell electroporation. Scale bar represents 10 

µm.  
201x417mm (300 x 300 DPI)  
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Figure 6  Neural progenitor divisions are predominantly planar but oblique and vertical divisions are 
increased in the neurogenic region of the optic tectum. (A,C) The optic tectum stained for F-actin (green) 
and cell nuclei (magenta), revealing planar (A) and vertical (C) progenitor divisions. Scale bar represents 5 

µm. (B,D) Higher magnification images of the dividing cells in (A) and (C). Scale bar represents 2 µm. (E) 
Distribution of cleavage angle orientation along the anterior-posterior axis of the optic tectum. n = 76 

animals. (F) The majority of divisions are planar, although there is an increase in the proportion of oblique 
and vertical divisions in the neurogenic region. *, p < 0.05 in Fisher's exact test.  
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Figure 7  The length of the cell cycle, S phase and G1 phase differ between proliferative and neurogenic 
regions of the optic tectum. (A-D) The optic tectum stained for BrdU (green) and cell nuclei (magenta) after 
2 hours (A), 6 hours (B), 14 hours (C) and 30 hours (D) of incubation with BrdU. P, proliferative region. N, 

neurogenic region. Scale bar represents 10 µm. (E H) BrdU immunoreactivity from the images shown in (A-
D). (I) Quantification of the fraction of BrdU+ cells over time in the proliferative and neurogenic regions. n = 

22 animals. (J) Length of cell cycle (left) and length of S phase (right) in proliferative and neurogenic 
regions. (K) The optic tectum stained for phospho-histone H3 (green) and cell nuclei (magenta). Phospho-
histone H3+ cells (arrowheads) exhibited clear somatic labeling and reside near the ventricular wall. In 
contrast, staining in the neuronal region is not associated with cell somata. n = 6 animals. Scale bar 

represents 10 µm. (L) Phospho-histone H3 immunoreactivity from the image shown in (K). (M) Combined 
length of G2 phase and M phase (left) and length of G1 phase (right) in proliferative and neurogenic regions. 
All population data are displayed as mean ± sem. **, p < 0.01 in unpaired t-test with Welch's correction.  
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