155 research outputs found

    Electron spectroscopy of carbon materials: Experiment and theory

    Get PDF
    We present a comparative spectroscopic study of carbon as graphite, diamond and C60 using C1s K-edge electron energy-loss spectroscopy (EELS), X-ray emission spectroscopy, and theoretical modelling. The first principles calculations of these spectra are obtained in the local density approximation using a self-consistent Gaussian basis pseudo-potential method. Calculated spectra show excellent agreement with experiment and are able to discriminate not only between various carbon hybridisations but also local variation in environment. Core-hole effects on the calculated spectra are also investigated. For the first time, the EEL spectrum of carbyne is calculated

    Long duration radio transients lacking optical counterparts are possibly Galactic Neutron Stars

    Get PDF
    (abridged) Recently, a new class of radio transients in the 5-GHz band was detected by Bower et al. We present new deep near-Infrared (IR) observations of the field containing these transients, and find no counterparts down to a limiting magnitude of K=20.4 mag. We argue that the bright (>1 Jy) radio transients recently reported by Kida et al. are consistent with being additional examples of the Bower et al. transients. We refer to these groups of events as "long-duration radio transients". The main characteristics of this population are: time scales longer than 30 minute but shorter than several days; rate, ~10^3 deg^-2 yr^-1; progenitors sky surface density of >60 deg^-2 (95% C.L.) at Galactic latitude ~40 deg; 1.4-5 GHz spectral slopes, f_\nu ~ \nu^alpha, with alpha>0; and most notably the lack of any counterparts in quiescence in any wavelength. We rule out an association with many types of objects. Galactic brown-dwarfs or some sort of exotic explosions remain plausible options. We argue that an attractive progenitor candidate for these radio transients is the class of Galactic isolated old neutron stars (NS). We confront this hypothesis with Monte-Carlo simulations of the space distribution of old NSs, and find satisfactory agreement for the large areal density. Furthermore, the lack of quiescent counterparts is explained quite naturally. In this framework we find: the mean distance to events in the Bower et al. sample is of order kpc; the typical distance to the Kida et al. transients are constrained to be between 30 pc and 900 pc (95% C.L.); these events should repeat with a time scale of order several months; and sub-mJy level bursts should exhibit Galactic latitude dependence. We discuss possible mechanisms giving rise to the observed radio emission.Comment: Submitted to ApJ, 17 pages, 10 figure

    Hydrogen-poor superluminous stellar explosions

    Full text link
    Supernovae (SNe) are stellar explosions driven by gravitational or thermonuclear energy, observed as electromagnetic radiation emitted over weeks or more. In all known SNe, this radiation comes from internal energy deposited in the outflowing ejecta by either radioactive decay of freshly-synthesized elements (typically 56Ni), stored heat deposited by the explosion shock in the envelope of a supergiant star, or interaction between the SN debris and slowly-moving, hydrogen-rich circumstellar material. Here we report on a new class of luminous SNe whose observed properties cannot be explained by any of these known processes. These include four new SNe we have discovered, and two previously unexplained events (SN 2005ap; SCP 06F6) that we can now identify as members. These SNe are all ~10 times brighter than SNe Ia, do not show any trace of hydrogen, emit significant ultra-violet (UV) flux for extended periods of time, and have late-time decay rates which are inconsistent with radioactivity. Our data require that the observed radiation is emitted by hydrogen-free material distributed over a large radius (~10^15 cm) and expanding at high velocities (>10^4 km s^-1). These long-lived, UV-luminous events can be observed out to redshifts z>4 and offer an excellent opportunity to study star formation in, and the interstellar medium of, primitive distant galaxies.Comment: Accepted to Nature. Press embargoed until 2011 June 8, 18:00 U

    The Type Ia Supernova Rate in Redshift 0.5--0.9 Galaxy Clusters

    Get PDF
    Supernova (SN) rates are potentially powerful diagnostics of metal enrichment and SN physics, particularly in galaxy clusters with their deep, metal-retaining potentials and relatively simple star-formation histories. We have carried out a survey for supernovae (SNe) in galaxy clusters, at a redshift range 0.5<z<0.9, using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. We reimaged a sample of 15 clusters that were previously imaged by ACS, thus obtaining two to three epochs per cluster, in which we discovered five likely cluster SNe, six possible cluster SNe Ia, two hostless SN candidates, and several background and foreground events. Keck spectra of the host galaxies were obtained to establish cluster membership. We conducted detailed efficiency simulations, and measured the stellar luminosities of the clusters using Subaru images. We derive a cluster SN rate of 0.35 SNuB +0.17/-0.12 (statistical) \pm0.13 (classification) \pm0.01 (systematic) [where SNuB = SNe (100 yr 10^10 L_B_sun)^-1] and 0.112 SNuM +0.055/-0.039 (statistical) \pm0.042 (classification) \pm0.005 (systematic) [where SNuM = SNe (100 yr 10^10 M_sun)^-1]. As in previous measurements of cluster SN rates, the uncertainties are dominated by small-number statistics. The SN rate in this redshift bin is consistent with the SN rate in clusters at lower redshifts (to within the uncertainties), and shows that there is, at most, only a slight increase of cluster SN rate with increasing redshift. The low and fairly constant SN Ia rate out to z~1 implies that the bulk of the iron mass in clusters was already in place by z~1. The recently observed doubling of iron abundances in the intracluster medium between z=1 and 0, if real, is likely the result of redistribution of existing iron, rather than new production of iron.Comment: Accepted to ApJ. Full resolution version available at http://kicp.uchicago.edu/~kerens/HSTclusterSNe

    sp-Electron Magnetic Clusters with a Large Spin in Graphene

    Get PDF
    Motivated by recent experimental data (Sepioni, M. et al. Phys. Rev. Lett. 2010, 105, 207205), we have studied the possibility of forming magnetic clusters with spin S> 1/2 on graphene by adsorption of hydrogen atoms or hydroxyl groups. Migration of hydrogen atoms and hydroxyl groups on the surface of graphene during the delamination of HOPG led to the formation of seven-atom or seven-OH-group clusters with S=5/2 that were of a special interest. The coincidence of symmetry of the clusters with the graphene lattice strengthens the stability of the cluster. For (OH)7 clusters that were situated greater than 3 nm from one another, the reconstruction barrier to a nonmagnetic configuration was approximately 0.4 eV, whereas for H7 clusters, there was no barrier and the high-spin state was unstable. Stability of the high-spin clusters increased if they were formed on top of ripples. Exchange interactions between the clusters were studied and we have shown that the ferromagnetic state is improbable. The role of the chemical composition of the solvent used for the delamination of graphite is discussed.Comment: 22 pages, 1 table, 4 figures. Minor changes, few refs added. Accepted to ACS Nan

    Astropy: A Community Python Package for Astronomy

    Get PDF
    We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Flexible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions. Significant functionality is under active development, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions

    The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission

    Get PDF
    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M u, AB = -22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 1044 erg s-1, while the estimated total radiated energy is 1.3 × 1051 erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s-1, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g AB 27.0 and R AB ≥ 26.0 mag, corresponding to M B, Vega ≳ -17.7 mag. © 2014. The American Astronomical Society. All rights reserved.

    Erratum: The solar orbiter radio and plasma waves (RPW) instrument (Astronomy and Astrophysics (2020) 642 (A12) DOI: 10.1051/0004-6361/201936214)

    Get PDF
    The erratum concerns Fig. 9 entitled "Antenna radio-electrical properties" for which some of the parameters are not correct. The new figure with new parameters is provided in Fig. 1 of this corrigendum. Fig. 1. Corrected Antenna radio-electrical properties. (Figure Presented)
    • …
    corecore