630 research outputs found

    The impact of microbial metabolism on marine dissolved organic matter

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Marine Science 3 (2011): 567-599, doi:10.1146/annurev-marine-120308-081003.Microbes mediate global biogeochemical cycles through their metabolism, and all metabolic processes begin with the interaction between the microbial cell wall or membrane and the external environment. For all heterotrophs and many autotrophs, critical growth substrates and factors are present within the dilute and heterogeneous mixture of compounds that constitutes dissolved organic matter (DOM). In short, the microbe--molecule interaction is one of the fundamental reactions within the global carbon cycle. Here, I summarize recent findings from studies that examine DOM--microbe interactions from either the DOM perspective (organic geochemistry) or the microbe perspective (microbial ecology). Gaps in our knowledge are highlighted and future integrative research directions are proposed.My research has been funded through the National Science Foundation, the Gordon and Betty Moore Foundation, and Woods Hole Oceanographic Institution internal resources

    Theoretical determination of the geometric and electronic structures of oligorylenes and poli(peri‐naphthalene)

    Get PDF
    We present a theoretical investigation of the electronic structure of oligorylenes (from perylene to heptarylene, including also the naphthalene molecule) and their corresponding polymer poly(peri‐naphthalene) (PPN) using the nonempirical valence effective (VEH) method. The geometry of the unit cell used to generate the polymer is extrapolated from the PM3‐optimized molecular geometries of the longest oligorylenes. That geometry shows some bond alternation along the perimeter carbon chains and a bond length of ≊1.46 Å is calculated for the peri bonds connecting the naphthalene units. The VEH one‐electron energy level distributions calculated for oligorylenes are used to interpret the experimental trends reported for the first ionization potentials, redox potentials, and lowest energy optical transitions. An excellent agreement is found between theoretical estimates and experimental values. The VEH band structure calculated for an isolated chain of PPN is interpreted in terms of the molecular orbitals of naphthalene. The ionization potential, electron affinity, and bandwidths obtained for PPN suggest a large capacity to form conducting p‐ or n‐type materials. The small band gap of 0.56 eV predicted for PPN from VEH band structure calculations is in good agreement with theoretical and experimental estimates calculated by extrapolating the data reported for the [email protected] ; [email protected] ; [email protected]

    The effect of hydrogeological and hydrochemical dynamics on landslide triggering in the central highlands of Ethiopia

    Get PDF
    The volcanic terrain at the western margin of the Main Ethiopian Rift in the Debre Sina area is known for its slope stability problems. This report describes research on the effects of the hydrogeological and hydrochemical dynamics on landslide triggering by using converging evidence from geological, geomorphological, geophysical, hydrogeochemical and isotopic investigations. The chemical characterization indicates that shallow to intermediate aquifers cause groundwater flow into the landslide mass, influencing long-term groundwater-level fluctuations underneath the landslide and, as a consequence, its stability. The low content of total dissolved solids and the bicarbonate types (Ca–Mg–HCO3 and Ca–HCO3) of the groundwater, and the dominantly depleted isotopic signature, indicate a fast groundwater flow regime that receives a high amount of precipitation. The main causes of the landslide are the steep slope topography and the pressure formed during precipitation, which leads to an increased weight of the loose and weathered materials. The geophysical data indicate that the area is covered by unconsolidated sediments and highly decomposed and weak volcanic rocks, which are susceptible to sliding when they get moist. The heterogeneity of the geological materials and the presence of impermeable layers embodied within the highly permeable volcanic rocks can result in the build-up of hydrostatic pressure at their interface, which can trigger landslides. Intense fracturing in the tilted basalt and ignimbrite beds can also accelerate infiltration of water, resulting to the build-up of high hydrostatic pressure causing low effective normal stress in the rock mass, giving rise to landslides

    Ultrasound- Versus Fluoroscopy-Guided Strategy for Transfemoral Transcatheter Aortic Valve Replacement Access: A Systematic Review and Meta-Analysis

    Get PDF
    Background:Access site vascular and bleeding complications remain problematic for patients undergoing transcatheter aortic valve replacement (TAVR). Ultrasound-guided transfemoral access approach has been suggested as a technique to reduce access site complications, but there is wide variation in adoption in TAVR. We performed a systematic review and meta-analysis to compare access site vascular and bleeding complications according to the Valve Academic Research Consortium-2 classification following the use of either ultrasound- or conventional fluoroscopy-guided transfemoral TAVR access.Methods:Medline, Embase, Web of Science, and The Cochrane Library were searched to November 2020 for studies comparing ultrasound- and fluoroscopy-guided access for transfemoral TAVR. A priori defined primary outcomes were extracted: (1) major, (2) minor, and (3) major and minor (total) access site vascular complications and (4) life-threatening/major, (5) minor, and (6) life-threatening, major, and minor (total) access site bleeding complications.Results:Eight observational studies (n=3875) were included, with a mean participant age of 82.8 years, STS score 5.81, and peripheral vascular disease in 23.5%. An ultrasound-guided approach was significantly associated with a reduced risk of total (Mantel-Haenszel odds ratio [MH-OR], 0.50 [95% CI, 0.35–0.73]), major (MH-OR, 0.51 [95% CI, 0.35–0.74]), and minor (MH-OR, 0.59 [95% CI, 0.38–0.91]) access site vascular complications. Ultrasound guidance was also significantly associated with total access site bleeding complications (MH-OR, 0.59 [95% CI, 0.39–0.90]). The association remained significant in sensitivity analyses of maximally adjusted minor and total vascular access site complications (MH-OR, 0.51 [95% CI, 0.29–0.90]; MH-OR, 0.44 [95% CI, 0.20–0.99], respectively).Conclusions:In the absence of randomized studies, our data suggests a potential benefit for ultrasound guidance to obtain percutaneous femoral access in TAVR

    Hyper-acute cardiovascular magnetic resonance T1 mapping predicts infarct characteristics in patients with ST elevation myocardial infarction

    Get PDF
    Background Myocardial recovery after primary percutaneous coronary intervention in acute myocardial infarction is variable and the extent and severity of injury are difficult to predict. We sought to investigate the role of cardiovascular magnetic resonance T1 mapping in the determination of myocardial injury very early after treatment of ST-segment elevation myocardial infarction (STEMI). Methods STEMI patients underwent 3 T cardiovascular magnetic resonance (CMR), within 3 h of primary percutaneous intervention (PPCI). T1 mapping determined the extent (area-at-risk as %left ventricle, AAR) and severity (average T1 values of AAR) of acute myocardial injury, and related these to late gadolinium enhancement (LGE), and microvascular obstruction (MVO). The characteristics of myocardial injury within 3 h was compared with changes at 24-h to predict final infarct size. Results Forty patients were included in this study. Patients with average T1 values of AAR ≄1400 ms within 3 h of PPCI had larger LGE at 24-h (33% ±14 vs. 18% ±10, P = 0.003) and at 6-months (27% ±9 vs. 12% ±9; P  9.5%) with 100% positive predictive value at the optimal cut-off of 1400 ms (area-under-the-curve, AUC 0.88, P = 0.006). Conclusion Hyper-acute T1 values of the AAR (within 3 h post PPCI, but not 24 h) predict a larger extent of MVO and infarct size at both 24 h and 6 months follow-up. Delayed CMR scanning for 24 h could not substitute the significant value of hyper-acute average T1 in determining infarct characteristics

    Defining and quantifying the resilience of responses to disturbance: a conceptual and modelling approach from soil science

    Get PDF
    There are several conceptual definitions of resilience pertaining to environmental systems and, even if resilience is clearly defined in a particular context, it is challenging to quantify. We identify four characteristics of the response of a system function to disturbance that relate to “resilience”: (1) degree of return of the function to a reference level; (2) time taken to reach a new quasi-stable state; (3) rate (i.e. gradient) at which the function reaches the new state; (4) cumulative magnitude of the function (i.e. area under the curve) before a new state is reached. We develop metrics to quantify these characteristics based on an analogy with a mechanical spring and damper system. Using the example of the response of a soil function (respiration) to disturbance, we demonstrate that these metrics effectively discriminate key features of the dynamic response. Although any one of these characteristics could define resilience, each may lead to different insights and conclusions. The salient properties of a resilient response must thus be identified for different contexts. Because the temporal resolution of data affects the accurate determination of these metrics, we recommend that at least twelve measurements are made over the temporal range for which the response is expected

    Pharmacology education for nurse prescribing students – a lesson in reusable learning objects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The shift away from a biological science to a social science model of nursing care has resulted in a reduction in pharmacology knowledge and understanding in pre-registration nursing students. This has a significant impact on nurse prescribing training where pharmacology is a critical component of the course from a patient safety perspective.</p> <p>Methods</p> <p>Reusable learning objects (RLOs) are electronic resources based on a single learning objective which use high quality graphics and audio to help engagement with the material and to facilitate learning. This study used questionnaire data from three successive cohorts of nurse prescribing students (n = 84) to evaluate the use of RLOs focussed around pharmacology concepts to promote the understanding of these concepts in students. A small number of students (n = 10) were followed up by telephone interview one year after qualification to gain further insight into students' perceptions of the value of RLOs as an educational tool.</p> <p>Results</p> <p>Students' perceptions of their own understanding of pharmacology concepts increased substantially following the introduction of RLOs to supplement the pharmacology component of the course. Student evaluation of the RLOs themselves was extremely positive with a number of students continuing to access these tools post-qualification.</p> <p>Conclusion</p> <p>The use of RLOs to support the pharmacology component of nurse prescribing courses successfully resulted in a perceived increase in pharmacology understanding, with some students directly implicating these educational tools in developing confidence in their own prescribing abilities.</p

    Medication knowledge, certainty, and risk of errors in health care: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medication errors are often involved in reported adverse events. Drug therapy, prescribed by physicians, is mostly carried out by nurses, who are expected to master all aspects of medication. Research has revealed the need for improved knowledge in drug dose calculation, and medication knowledge as a whole is poorly investigated. The purpose of this survey was to study registered nurses' medication knowledge, certainty and estimated risk of errors, and to explore factors associated with good results.</p> <p>Methods</p> <p>Nurses from hospitals and primary health care establishments were invited to carry out a multiple-choice test in pharmacology, drug management and drug dose calculations (score range 0-14). Self-estimated certainty in each answer was recorded, graded from 0 = very uncertain to 3 = very certain. Background characteristics and sense of coping were recorded. Risk of error was estimated by combining knowledge and certainty scores. The results are presented as mean (±SD).</p> <p>Results</p> <p>Two-hundred and three registered nurses participated (including 16 males), aged 42.0 (9.3) years with a working experience of 12.4 (9.2) years. Knowledge scores in pharmacology, drug management and drug dose calculations were 10.3 (1.6), 7.5 (1.6), and 11.2 (2.0), respectively, and certainty scores were 1.8 (0.4), 1.9 (0.5), and 2.0 (0.6), respectively. Fifteen percent of the total answers showed a high risk of error, with 25% in drug management. Independent factors associated with high medication knowledge were working in hospitals (p < 0.001), postgraduate specialization (p = 0.01) and completion of courses in drug management (p < 0.01).</p> <p>Conclusions</p> <p>Medication knowledge was found to be unsatisfactory among practicing nurses, with a significant risk for medication errors. The study revealed a need to improve the nurses' basic knowledge, especially when referring to drug management.</p

    Can a Multifaceted Intervention Including Motivational Interviewing Improve Medication Adherence, Quality of Life, and Mortality Rates in Older Patients Undergoing Coronary Artery Bypass Surgery? A Multicenter, Randomized Controlled Trial with 18-Month Follow-Up.

    Get PDF
    BACKGROUND: Patients undergoing coronary artery bypass graft (CABG) surgery are required to take a complex regimen of medications for extended periods, and they may have negative outcomes because they struggle to adhere to this regimen. Designing effective interventions to promote medication adherence in this patient group is therefore important. OBJECTIVE: The present study aimed to evaluate the long-term effects of a multifaceted intervention (psycho-education, motivational interviewing, and short message services) on medication adherence, quality of life (QoL), and mortality rates in older patients undergoing CABG surgery. METHODS: Patients aged over 65 years from 12 centers were assigned to the intervention (EXP; n = 144) or treatment-as-usual (TAU; n = 144) groups using cluster randomization at center level. Medication adherence was evaluated using the Medication Adherence Rating Scale (MARS), pharmacy refill rate, and lipid profile; QoL was evaluated using Short Form-36. Data were collected at baseline; 3, 6, and 18 months after intervention. Survival status was followed up at 18 months. Multi-level regressions and survival analyses for hazard ratio (HR) were used for analyses. RESULTS: Compared with patients who received TAU, the MARS, pharmacy refill rate, and lipid profile of patients in the EXP group improved 6 months after surgery (p < 0.01) and remained so 18 months after surgery (p < 0.01). QoL also increased among patients in the EXP group as compared with those who received TAU at 18 months post-surgery (physical component summary score p = 0.02; mental component summary score p = 0.04). HR in the EXP group compared with the TAU group was 0.38 (p = 0.04). CONCLUSION: The findings suggest that a multifaceted intervention can improve medication adherence in older patients undergoing CABG surgery, with these improvements being maintained after 18 months. QoL and survival rates increased as a function of better medication adherence. ClinicalTrials.gov NCT02109523

    Novel United Kingdom prognostic model for 30-day mortality following transcatheter aortic valve implantation

    Get PDF
    Objective Existing clinical prediction models (CPM) for short-term mortality after transcatheter aortic valve implantation (TAVI) have limited applicability in the UK due to moderate predictive performance and inconsistent recording practices across registries. The aim of this study was to derive a UK-TAVI CPM to predict 30-day mortality risk for benchmarking purposes. Methods A two-step modelling strategy was undertaken: first, data from the UK-TAVI Registry between 2009 and 2014 were used to develop a multivariable logistic regression CPM using backwards stepwise regression. Second, model-updating techniques were applied using the 2013–2014 data, thereby leveraging new approaches to include frailty and to ensure the model was reflective of contemporary practice. Internal validation was performed by bootstrapping to estimate in-sample optimism-corrected performance. Results Between 2009 and 2014, up to 6339 patients were included across 34 centres in the UK-TAVI Registry (mean age, 81.3; 2927 female (46.2%)). The observed 30-day mortality rate was 5.14%. The final UK-TAVI CPM included 15 risk factors, which included two variables associated with frailty. After correction for in-sample optimism, the model was well calibrated, with a calibration intercept of 0.02 (95% CI −0.17 to 0.20) and calibration slope of 0.79 (95% CI 0.55 to 1.03). The area under the receiver operating characteristic curve, after adjustment for in-sample optimism, was 0.66. Conclusion The UK-TAVI CPM demonstrated strong calibration and moderate discrimination in UK-TAVI patients. This model shows potential for benchmarking, but even the inclusion of frailty did not overcome the need for more wide-ranging data and other outcomes might usefully be explored
    • 

    corecore