43 research outputs found

    A Pathogenic Mechanism in Huntington's Disease Involves Small CAG-Repeated RNAs with Neurotoxic Activity

    Get PDF
    Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches

    Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased concentrations of choline-containing compounds are frequently observed in breast carcinomas, and may serve as biomarkers for both diagnostic and treatment monitoring purposes. However, underlying mechanisms for the abnormal choline metabolism are poorly understood.</p> <p>Methods</p> <p>The concentrations of choline-derived metabolites were determined in xenografted primary human breast carcinomas, representing basal-like and luminal-like subtypes. Quantification of metabolites in fresh frozen tissue was performed using high-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS).</p> <p>The expression of genes involved in phosphatidylcholine (PtdCho) metabolism was retrieved from whole genome expression microarray analyses.</p> <p>The metabolite profiles from xenografts were compared with profiles from human breast cancer, sampled from patients with estrogen/progesterone receptor positive (ER+/PgR+) or triple negative (ER-/PgR-/HER2-) breast cancer.</p> <p>Results</p> <p>In basal-like xenografts, glycerophosphocholine (GPC) concentrations were higher than phosphocholine (PCho) concentrations, whereas this pattern was reversed in luminal-like xenografts. These differences may be explained by lower choline kinase (<it>CHKA</it>, <it>CHKB</it>) expression as well as higher PtdCho degradation mediated by higher expression of phospholipase A2 group 4A (<it>PLA2G4A</it>) and phospholipase B1 (<it>PLB1</it>) in the basal-like model. The glycine concentration was higher in the basal-like model. Although glycine could be derived from energy metabolism pathways, the gene expression data suggested a metabolic shift from PtdCho synthesis to glycine formation in basal-like xenografts. In agreement with results from the xenograft models, tissue samples from triple negative breast carcinomas had higher GPC/PCho ratio than samples from ER+/PgR+ carcinomas, suggesting that the choline metabolism in the experimental models is representative for luminal-like and basal-like human breast cancer.</p> <p>Conclusions</p> <p>The differences in choline metabolite concentrations corresponded well with differences in gene expression, demonstrating distinct metabolic profiles in the xenograft models representing basal-like and luminal-like breast cancer. The same characteristics of choline metabolite profiles were also observed in patient material from ER+/PgR+ and triple-negative breast cancer, suggesting that the xenografts are relevant model systems for studies of choline metabolism in luminal-like and basal-like breast cancer.</p

    Differential Role of Human Choline Kinase α and β Enzymes in Lipid Metabolism: Implications in Cancer Onset and Treatment

    Get PDF
    11 pages, 6 figures, 1 table.Background The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK) is the first enzyme of the Kennedy branch of synthesis of 1phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKα and ChoKβ isoforms, the first one with two different variants of splicing. Recently ChoKα has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKβ in carcinogenesis has been reported. Methodology/Principal Findings Here we compare the in vitro and in vivo properties of ChoKα1 and ChoKβ in lipid metabolism, and their potential role in carcinogenesis. Both ChoKα1 and ChoKβ showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKβ display an ethanolamine kinase role, ChoKα1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKα1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKβ overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKα1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKβ mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKα1 than ChoKβ. Conclusion/Significance This study represents the first evidence of the distinct metabolic role of ChoKα and ChoKβ isoforms, suggesting different physiological roles and implications in human carcinogenesis. These findings constitute a step forward in the design of an antitumoral strategy based on ChoK inhibition.This work has been supported by grants to JCL from Comunidad de Madrid (GR-SAL-0821-2004), Ministerio de Ciencia e Innovación (SAF2008-03750, RD06/0020/0016), Fundación Mutua Madrileña, and by a grant to ARM from Fundación Mutua Madrileña.Peer reviewe

    Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a variety of tissues. Identification of the molecular mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment of binding sites in the promoter regions of these genes. In addition to metabolites from TCA cycle, oxidative phosphorylation, and lipid metabolism (known to be associated with T2DM), we identified several reporter metabolites representing novel biomarker candidates. For example, the highly connected metabolites NAD+/NADH and ATP/ADP were also identified as reporter metabolites that are potentially contributing to the widespread gene expression changes observed in T2DM. An algorithm based on the analysis of the promoter regions of the genes associated with reporter metabolites revealed a transcription factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic and regulatory nodes potentially involved in the pathogenesis of T2DM

    Huntington's disease: a clinical review

    Get PDF
    Huntington's disease (HD) is a fully penetrant neurodegenerative disease caused by a dominantly inherited CAG trinucleotide repeat expansion in the huntingtin gene on chromosome 4. In Western populations HD has a prevalence of 10.6-13.7 individuals per 100,000. It is characterised by cognitive, motor and psychiatric disturbance. At the cellular level mutant huntingtin results in neuronal dysfunction and death through a number of mechanisms, including disruption of proteostasis, transcription and mitochondrial function and direct toxicity of the mutant protein. Early macroscopic changes are seen in the striatum with involvement of the cortex as the disease progresses. There are currently no disease modifying treatments therefore supportive and symptomatic management is the mainstay of treatment. In recent years there have been significant advances in understanding both the cellular pathology and the macroscopic structural brain changes that occur as the disease progresses. In the last decade there has been a large growth in potential therapeutic targets and clinical trials. Perhaps the most promising of these are the emerging therapies aimed at lowering levels of mutant huntingtin. Antisense oligonucleotide therapy is one such approach with clinical trials currently underway. This may bring us one step closer to treating and potentially preventing this devastating condition

    Transcription, Epigenetics and Ameliorative Strategies in Huntington’s Disease: a Genome-Wide Perspective

    Get PDF
    corecore