630 research outputs found

    Amyloid and allorecognition in the colonial ascidian Botryllus schlosseri.

    Get PDF
    Allorecognition, i.e., the ability of intraspecific nonself recognition is widely distributed among colonial, sessile marine organisms in the form of colony specificity. In the cosmopolitan compound ascidian Botryllus schlosseri, colony specificity is controlled by a highly polymorphic Fu/HC locus: two colonies sharing at least one alleleat the Fu/HC locus can fuse into a chimeric colony; if no alleles are shared, a typical inflammatory reaction occurs, with the recruitment of a specific hemocyte type, the cytotoxic morula cells (MCs), inside the tips of the ampullae (the blind termini ofthe tunic vasculature) extending towards the alien colony, their extravasation in the tunic and their final degranulation. As a consequence of allorecognition, necrotic, melanic spots (points of rejection; PORs) form along the contact border, due to the release, by MCs, of their granular content, mainly represented by quinones, polyphenols and the enzyme phenoloxidase (PO), upon the perception of the allogeneic humoral factors diffusing from the alien colony through the partially fused tunics. It is remarkable that the deposition of melanin and the cell death is confined to the immediate outside of the ampullar tips, suggesting that the diffusion of PO and the products of its activity are, in some way, prevented in order to limit cytotoxicity to the immediate neighbourhood of the contact region. In this context, we looked for factors released by MCs that could limit the spreading of cytotoxicity and melanisation. We found that MCs share with vertebrate melanocytes similar packaging of melanin precursors, entrapped in a 3Dscaffold of amyloid fibrils. They contribute to form the electron dense content of MC granules that, after stimulation, flake off and is released in the surrounding medium. Released amyloid fibrils limit the diffusion of the produced melanin. The search for genes and factor controlling both melanogenesis and amyloidogenesis, revealed an evolutionary conserved machinery involved in the processes and an unexpected cross talk between the two Botryllus immunocyte types, i.e., phagocytes and MCs. Furthermore, this work confirms the physiological role of amyloid in tunicate immunity

    Effectiveness of Snail Slime in the Green Synthesis of Silver Nanoparticles

    Get PDF
    The development of green, low cost and sustainable synthetic routes to produce metal nanoparticles is of outmost importance, as these materials fulfill large scale applications in a number of different areas. Herein, snail slime extracted from Helix Aspersa snails was successfully employed both as bio-reducing agent of silver nitrate and as bio-stabilizer of the obtained nanoparticles. Several trials were carried out by varying temperature, the volume of snail slime and the silver nitrate concentration to find the best biogenic pathway to produce silver nanoparticles. The best results were obtained when the synthesis was performed at room temperature and neutral pH. UV-Visible Spectroscopy, SEM-TEM and FTIR were used for a detailed characterization of the nanoparticles. The obtained nanoparticles are spherical, with mean diameters measured from TEM images ranging from 15 to 30 nm and stable over time. The role of proteins and glycoproteins in the biogenic production of silver nanoparticles was elucidated. Infrared spectra clearly showed the presence of proteins all around the silver core. The macromolecular shell is also responsible of the effectiveness of the synthesized AgNPs to inhibit Gram positive and Gram negative bacterial growth

    Combined parameter and model reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods

    Get PDF
    In this chapter we introduce a combined parameter and model reduction methodology and present its application to the efficient numerical estimation of a pressure drop in a set of deformed carotids. The aim is to simulate a wide range of possible occlusions after the bifurcation of the carotid. A parametric description of the admissible deformations, based on radial basis functions interpolation, is introduced. Since the parameter space may be very large, the first step in the combined reduction technique is to look for active subspaces in order to reduce the parameter space dimension. Then, we rely on model order reduction methods over the lower dimensional parameter subspace, based on a POD-Galerkin approach, to further reduce the required computational effort and enhance computational efficiency

    Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-

    Get PDF
    We report the first observation of the baryonic flavor-changing neutral current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a statistical significance of 5.8 Gaussian standard deviations. This measurement uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV collected by the CDF II detector at the Tevatron collider. The total and differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}. We also report the first measurement of the differential branching ratio of B_s -> phi mu+ mu- using 49 signal events. In addition, we report branching ratios for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio

    Precision Top-Quark Mass Measurements at CDF

    Get PDF
    We present a precision measurement of the top-quark mass using the full sample of Tevatron s=1.96\sqrt{s}=1.96 TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb1fb^{-1}. Using a sample of ttˉt\bar{t} candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the WW boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with {\it in situ} calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, \mtop = 172.85 \pm0.71(stat) 0.71 (stat) \pm0.85(syst)GeV/c2. 0.85 (syst) GeV/c^{2}.Comment: submitted to Phys. Rev. Let

    Measurement of branching ratio and Bs0 lifetime in the decay Bs0 -> J/psi f0(980) at CDF

    Full text link
    We present a study of Bs0 decays to the CP-odd final state J/psi f0(980) with J/psi -> mu+ mu- and f0(980) -> pi+ pi-. Using ppbar collision data with an integrated luminosity of 3.8/fb collected by the CDF II detector at the Tevatron we measure a Bs0 lifetime of tau(Bs0 -> J/psi f0(980)) = 1.70 -0.11+0.12(stat) +-0.03(syst) ps. This is the first measurement of the Bs0 lifetime in a decay to a CP eigenstate and corresponds in the standard model to the lifetime of the heavy Bs0 eigenstate. We also measure the product of branching fractions of Bs0 -> J/psi f0(980) and f0(980) -> pi+ pi- relative to the product of branching fractions of Bs0 -> J/psi phi and phi -> K+ K- to be R_f0/phi = 0.257 +_0.020(stat) +-0.014(syst), which is the most precise determination of this quantity to date.Comment: accepted by Phys. Rev.

    Non-intrusive polynomial chaos method applied to full-order and reduced problems in computational fluid dynamics: A comparison and perspectives

    Get PDF
    In this work, Uncertainty Quantification (UQ) based on non-intrusive Polynomial Chaos Expansion (PCE) is applied to the CFD problem of the flow past an airfoil with parameterized angle of attack and inflow velocity. To limit the computational cost associated with each of the simulations required by the non-intrusive UQ algorithm used, we resort to a Reduced Order Model (ROM) based on Proper Orthogonal Decomposition (POD)-Galerkin approach. A first set of results is presented to characterize the accuracy of the POD-Galerkin ROM developed approach with respect to the Full Order Model (FOM) solver (OpenFOAM). A further analysis is then presented to assess how the UQ results are affected by substituting the FOM predictions with the surrogate ROM ones

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
    corecore