8 research outputs found

    Stratospheric Injection of Brominated Very Short‐Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models

    Get PDF
    We quantify the stratospheric injection of brominated very short‐lived substances (VSLS) based on aircraft observations acquired in winter 2014 above the Tropical Western Pacific during the CONvective TRansport of Active Species in the Tropics (CONTRAST) and the Airborne Tropical TRopopause EXperiment (ATTREX) campaigns. The overall contribution of VSLS to stratospheric bromine was determined to be 5.0 ± 2.1 ppt, in agreement with the 5 ± 3 ppt estimate provided in the 2014 World Meteorological Organization (WMO) Ozone Assessment report (WMO 2014), but with lower uncertainty. Measurements of organic bromine compounds, including VSLS, were analyzed using CFC‐11 as a reference stratospheric tracer. From this analysis, 2.9 ± 0.6 ppt of bromine enters the stratosphere via organic source gas injection of VSLS. This value is two times the mean bromine content of VSLS measured at the tropical tropopause, for regions outside of the Tropical Western Pacific, summarized in WMO 2014. A photochemical box model, constrained to CONTRAST observations, was used to estimate inorganic bromine from measurements of BrO collected by two instruments. The analysis indicates that 2.1 ± 2.1 ppt of bromine enters the stratosphere via inorganic product gas injection. We also examine the representation of brominated VSLS within 14 global models that participated in the Chemistry‐Climate Model Initiative. The representation of stratospheric bromine in these models generally lies within the range of our empirical estimate. Models that include explicit representations of VSLS compare better with bromine observations in the lower stratosphere than models that utilize longer‐lived chemicals as a surrogate for VSLS

    A NEGATIVE ION PHOTOELECTRON SPECTROSCOPIC AND COMPUTATIONAL STUDY OF Mo2_{2} AND Mo2_{2}^{-}

    No full text
    Author Institution: Department of Chemistry, University of Minnesota, Minneapolis, MN 55455We report the 488 and 514 nm anion photoelectron spectra of Mo2_{2}^{-}. Neutral Mo2_{2} has been described in recent abab initioinitio studies as having a bond order of six, predicted to be the highest of any homonuclear diatomic, exceeding even that of Cr2_{2}(five). The photoelectron spectrum of Mo2_{2}^{-}confirms the previously measured vibrational frequency of gas phase Mo2_{2} and displays transitions to vibrational levels up to v=7 in its 1Σg+^{1}\Sigma_{g}^{+} ground state. The electron affinity of Mo2_{2} is measured to be 0.732 ±\pm 0.010 eV. The Mo2_{2}^{-} ground state is assigned as a 2Σu+^{2}\Sigma_{u}^{+} state, in which the extra electron occupies a formally antibonding σu\sigma_{u} orbital of primarily 5ss atomic parentage. A Franck-Condon analysis of the vibrational band intensities indicates a change in the equilibrium bond length of only 0.03 ±\pm 0.02 \AA upon electron detachment. These results, and the similar vibrational frequencies measured for Mo2_{2} and Mo2_{2}^{-}, suggest that the anion HOMO is essentially nonbonding. Weak photodetachment transitions to excited states of Mo2_{2} lying within 1.2 eV of its ground state are also observed. DFT calculations using the BPW91/SDD method show good agreement with experiment for the electron affinity of Mo2_{2} and the bond lengths in the anion and neutral molecule ground states. It is hoped that these spectroscopic results will motivate and assist high level theoretical studies of the Mo2_{2}^{-} anion

    BrO and inferred Bry profiles over the western Pacific : Relevance of inorganic bromine sources and a Bry minimum in the aged tropical tropopause layer

    Get PDF
    We report measurements of bromine monoxide (BrO) and use an observationally constrained chemical box model to infer total gas-phase inorganic bromine (Bry) over the tropical western Pacific Ocean (tWPO) during the CONTRAST field campaign (January-February 2014). The observed BrO and inferred Bry profiles peak in the marine boundary layer (MBL), suggesting the need for a bromine source from sea-salt aerosol (SSA), in addition to organic bromine (CBry). Both profiles are found to be C-shaped with local maxima in the upper free troposphere (FT). The median tropospheric BrO vertical column density (VCD) was measured as 1.6×1013 molec cm-2, compared to model predictions of 0.9×1013 molec cm-2 in GEOS-Chem (CBry but no SSA source), 0.4×1013 molec cm-2 in CAM-Chem (CBry and SSA), and 2.1×1013 molec cm-2 in GEOS-Chem (CBry and SSA). Neither global model fully captures the C-shape of the Bry profile. A local Bry maximum of 3.6 ppt (2.9-4.4 ppt; 95 % confidence interval, CI) is inferred between 9.5 and 13.5 km in air masses influenced by recent convective outflow. Unlike BrO, which increases from the convective tropical tropopause layer (TTL) to the aged TTL, gas-phase Bry decreases from the convective TTL to the aged TTL. Analysis of gas-phase Bry against multiple tracers (CFC-11, H2O-O3 ratio, and potential temperature) reveals a Bry minimum of 2.7 ppt (2.3-3.1 ppt; 95 % CI) in the aged TTL, which agrees closely with a stratospheric injection of 2.6 ± 0.6 ppt of inorganic Bry (estimated from CFC-11 correlations), and is remarkably insensitive to assumptions about heterogeneous chemistry. Bry increases to 6.3 ppt (5.6-7.0 ppt; 95 % CI) in the stratospheric "middleworld" and 6.9 ppt (6.5-7.3 ppt; 95 % CI) in the stratospheric "overworld". The local Bry minimum in the aged TTL is qualitatively (but not quantitatively) captured by CAM-Chem, and suggests a more complex partitioning of gas-phase and aerosol Bry species than previously recognized. Our data provide corroborating evidence that inorganic bromine sources (e.g., SSA-derived gas-phase Bry) are needed to explain the gas-phase Bry budget in the upper free troposphere and TTL. They are also consistent with observations of significant bromide in Upper Troposphere-Lower Stratosphere aerosols. The total Bry budget in the TTL is currently not closed, because of the lack of concurrent quantitative measurements of gas-phase Bry species (i.e., BrO, HOBr, HBr, etc.) and aerosol bromide. Such simultaneous measurements are needed to (1) quantify SSA-derived Bry in the upper FT, (2) test Bry partitioning, and possibly explain the gas-phase Bry minimum in the aged TTL, (3) constrain heterogeneous reaction rates of bromine, and (4) account for all of the sources of Bry to the lower stratosphere

    Wildfire influence on urban ozone: an observationally-constrained box modeling study at a site in the Colorado Front Range

    No full text
    Increasing trends in biomass burning emissions significantly impact air quality in North America. Enhanced mixing ratios of ozone (O3) in urban areas during smoke-impacted periods occur through transport of O3 produced within the smoke or through mixing of pyrogenic volatile organic compounds (PVOCs) with urban nitrogen oxides (NOx = NO + NO2) to enhance local O3 production. Here, we analyze a set of detailed chemical measurements, including carbon monoxide (CO), NOx, and speciated volatile organic compounds (VOCs), to evaluate the effects of smoke transported from relatively local and long-range fires on O3 measured at a site in Boulder, Colorado, during summer 2020. Relative to the smoke-free period, CO, background O3, OH reactivity, and total VOCs increased during both the local and long-range smoke periods, but NOx mixing ratios remained approximately constant. These observations are consistent with transport of PVOCs (comprised primarily of oxygenates) but not NOx with the smoke and with the influence of O3 produced within the smoke upwind of the urban area. Box-model calculations show that local O3 production during all three periods was in the NOx-sensitive regime. Consequently, this locally produced O3 was similar in all three periods and was relatively insensitive to the increase in PVOCs. However, calculated NOx sensitivities show that PVOCs substantially increase O3 production in the transition and NOx-saturated (VOC-sensitive) regimes. These results suggest that (1) O3 produced during smoke transport is the main driver for O3 increases in NOx-sensitive urban areas and (2) smoke may cause an additional increase in local O3 production in NOx-saturated (VOC-sensitive) urban areas. Additional detailed VOC and NOx measurements in smoke impacted urban areas are necessary to broadly quantify the effects of wildfire smoke on urban O3 and develop effective mitigation strategies

    Active and widespread halogen chemistry in the tropical and subtropical free troposphere

    No full text
    Halogens in the troposphere are increasingly recognized as playing an important role for atmospheric chemistry, and possibly climate. Bromine and iodine react catalytically to destroy ozone (O(3)), oxidize mercury, and modify oxidative capacity that is relevant for the lifetime of greenhouse gases. Most of the tropospheric O(3) and methane (CH(4)) loss occurs at tropical latitudes. Here we report simultaneous measurements of vertical profiles of bromine oxide (BrO) and iodine oxide (IO) in the tropical and subtropical free troposphere (10°N to 40°S), and show that these halogens are responsible for 34% of the column-integrated loss of tropospheric O(3). The observed BrO concentrations increase strongly with altitude (∼3.4 pptv at 13.5 km), and are 2–4 times higher than predicted in the tropical free troposphere. BrO resembles model predictions more closely in stratospheric air. The largest model low bias is observed in the lower tropical transition layer (TTL) over the tropical eastern Pacific Ocean, and may reflect a missing inorganic bromine source supplying an additional 2.5–6.4 pptv total inorganic bromine (Br(y)), or model overestimated Br(y) wet scavenging. Our results highlight the importance of heterogeneous chemistry on ice clouds, and imply an additional Br(y) source from the debromination of sea salt residue in the lower TTL. The observed levels of bromine oxidize mercury up to 3.5 times faster than models predict, possibly increasing mercury deposition to the ocean. The halogen-catalyzed loss of tropospheric O(3) needs to be considered when estimating past and future ozone radiative effects

    Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    Get PDF
    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program’s Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate related properties in freshly polluted and “aged” urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models

    BrO and Bry profiles over the Western Pacific: Relevance of Inorganic Bromine Sources and a Bry Minimum in the Aged Tropical Tropopause Layer

    Get PDF
    We report measurements of bromine monoxide (BrO) and use an observationally constrained chemical box-model to infer total gas phase inorganic bromine (Bry) over the tropical Western Pacific Ocean (tWPO) during the CONTRAST field 40 campaign (January – February 2014). The median tropospheric BrO Vertical Column Density (VCD) over the tWPO was measured as 1.6×1013 molec. cm˗2, compared to model predictions of 0.4×1013 in CAM-Chem, 0.9×1013 in GEOS-Chem, and 2.1×1013 in GEOS-Chem with a sea-salt aerosol (SSA) bromine source. The observed BrO and inferred Bry profiles is found to be C-shaped in the troposphere, with local maxima in the marine boundary layer (MBL) and in the upper free troposphere. Neither global model fully captures this profile shape. Between 6 and 13.5 km, the inferred Bry is highly sensitive to 5 assumptions about the rate of heterogeneous bromine recycling (depends on the surface area of ice/aerosols), and the inclusion of a SSA bromine source. A local Bry maximum of 3.6 ppt (2.3-11.1 ppt, 95% CI) is observed between 9.5 and 13.5 km in air masses influenced by recent convective outflow. Unlike BrO, which increases from the convective TTL to the aged TTL, gas phase Bry decreases from the convective TTL to the aged TTL. Analysis of gas phase Bry against multiple tracers (CFC-11, H2O/O3 ratio, and θ) reveals a Bry minimum of 2.7 ppt (2.4-3.0 ppt, 95% CI) in the aged TTL, which is remarkably insensitive 10 to assumptions about heterogeneous chemistry. Bry increases to 6.3 ppt (5.9-6.7 ppt, 95% CI) in the stratospheric middleworld, and 6.9 ppt (6.7-7.1 ppt, 95% CI) in the stratospheric overworld. The local Bry minimum in the aged TTL is qualitatively (but not quantitatively) captured by CAM-chem, and suggests a more complex partitioning of gas phase and aerosol Bry species than previously recognized. Our data provide corroborating evidence that inorganic bromine sources (e.g., SSA derived gas phase Bry) are needed to explain the gas phase Bry budget in the TTL. They are also consistent with observations of significant 15 bromide in UTLS aerosols. The total Bry budget in the TTL is currently not closed, because of the lack of concurrent quantitative measurements of gas phase Bry species (i.e., BrO, HOBr, HBr, etc.) and aerosol bromide. These simultaneous measurements are needed 1) to quantify SSA derived Bry aloft, 2) to test Bry partitioning, and explain the gas phase Bry minimum in the aged TTL, 3) to constrain heterogeneous reaction rates of bromine, and 4) to account for all of the sources of Bry to the lower stratosphere.Fil: Koenig, Theodore K.. State University of Colorado at Boulder; Estados Unidos. Cooperative Institute for Research in Environmental Sciences; Estados UnidosFil: Volkamer, Rainer. State University of Colorado at Boulder; Estados Unidos. Cooperative Institute for Research in Environmental Sciences; Estados UnidosFil: Baidar, Sunil. Cooperative Institute for Research in Environmental Sciences; Estados Unidos. State University of Colorado at Boulder; Estados UnidosFil: Dix, Barbara. State University of Colorado at Boulder; Estados UnidosFil: Wang, Siyuan. State University of Colorado at Boulder; Estados Unidos. University of Michigan; Estados UnidosFil: Anderson, Daniel C.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados UnidosFil: Salawitch, Ross J.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados UnidosFil: Wales, Pamela A.. University of Maryland. Department of Atmospheric and Oceanic Science; Estados UnidosFil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Fernandez, Rafael Pedro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnologica Nacional. Facultad Regional Mendoza. Secretaría de Ciencia, Tecnología y Postgrado; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Saiz Lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Evans, Mathew J.. University of York; Reino UnidoFil: Sherwen, Tomás. University of York; Reino UnidoFil: Jacob, Daniel J.. Harvard University; Estados UnidosFil: Schmidt, Johan. Universidad de Copenhagen; DinamarcaFil: Kinnison, Douglas. National Center for Atmospheric Research; Estados UnidosFil: Lamarque, Jean François. National Center for Atmospheric Research; Estados UnidosFil: Apel, Eric C.. National Center for Atmospheric Research; Estados UnidosFil: Bresch, James C.. National Center for Atmospheric Research; Estados UnidosFil: Campos, Teresa. National Center for Atmospheric Research; Estados UnidosFil: Flocke, Frank M.. National Center for Atmospheric Research; Estados UnidosFil: Hall, Samuel R.. National Center for Atmospheric Research; Estados UnidosFil: Honomichl, Shawn B.. National Center for Atmospheric Research; Estados UnidosFil: Hornbrook, Rebecca. National Center for Atmospheric Research; Estados UnidosFil: Jensen, Jorgen B.. National Center for Atmospheric Research; Estados UnidosFil: Lueb, Richard. National Center for Atmospheric Research; Estados UnidosFil: Montzka, Denise D.. National Center for Atmospheric Research; Estados UnidosFil: Pan, Laura L.. National Center for Atmospheric Research; Estados UnidosFil: Reeves, J. Michael. National Center for Atmospheric Research; Estados UnidosFil: Schauffle, Sue M.. National Center for Atmospheric Research; Estados UnidosFil: Ullmann, Kirk. National Center for Atmospheric Research; Estados UnidosFil: Weinheimer, Andrew J.. National Center for Atmospheric Research; Estados UnidosFil: Atlas, Elliot L.. University of Miami; Estados UnidosFil: Donets, Valeria. University of Miami; Estados UnidosFil: Maria A. Navarro. University of Miami; Estados UnidosFil: Riemer, Daniel. University of Miami; Estados UnidosFil: Blake, Nicola J.. University of California; Estados UnidosFil: Chen, Dexien. School of Earth & Atmospheric Sciences; Estados UnidosFil: Huey, L. Gregory. School of Earth & Atmospheric Sciences; Estados UnidosFil: Tanner, David J.. School of Earth & Atmospheric Sciences; Estados UnidosFil: Hanisco, Thomas F.. National Aeronautics and Space Administration; Estados UnidosFil: Wolfe, Glenn M.. University of Maryland; Estados Unidos. National Aeronautics and Space Administration; Estados Unido
    corecore