187 research outputs found

    Early search for supersymmetric dark matter models at the LHC without missing energy

    Full text link
    We investigate early discovery signals for supersymmetry at the Large Hadron Collider without using information about missing transverse energy. Instead we use cuts on the number of jets and isolated leptons (electrons and/or muons). We work with minimal supersymmetric extensions of the standard model, and focus on phenomenological models that give a relic density of dark matter compatible with the WMAP measurements. An important model property for early discovery is the presence of light sleptons, and we find that for an integrated luminosity of only 200--300 pb1^{-1} at a center-of-mass energy of 10 TeV models with gluino masses up to 700\sim 700 GeV can be tested.Comment: 28 pages, 12 figures; published versio

    Plant Community Response to Regional Sources of Dominant Grasses in Grasslands Restored Across a Longitudinal Gradient

    Get PDF
    Restorations in the light of climate change will need to take into account whether or not sources of the dominant plants are adapted to the future conditions at a site. In addition, the effect of these dominants, especially if sourced from outside the local area, on the assembling plant community needs assessment. We investigated how different ecotypes of the tallgrass prairie dominants Andropogon gerardii and Sorghastrum nutans affect assembling prairie communities. Four reciprocal common garden experiments were established across a longitudinal climate gradient characterized by a decrease in aridity in western Kansas (COLBY), central Kansas (HAYS), eastern Kansas (MANHATTAN), and southern Illinois (CARBONDALE). At each site, plots were seeded with ecotypes of A. gerardii and S. nutans sourced from central Kansas (CKS), eastern Kansas (EKS), southern Illinois (SIL), or a mix of all three regional ecotypes (MIX). All plots were also seeded with the same suite of seven subordinate species. Species composition was measured during the fourth year of restoration. The greatest variation between communities occurred at HAYS and CARBONDALE between plots seeded with CKS and SIL ecotypes. At these sites, plots seeded with the local source had the lowest diversity and cover of nondominant species. Compositional variation between plots seeded with different dominant grass ecotypes was found exclusively at CARBONDALE between CKS and SIL plots. Differences between locally seeded plots and plots seeded with a MIX of dominant grass ecotypes were contingent upon site. At CARBONDALE, MIX seeded plots had higher diversity than SIL ecotype plots. Our results indicate that across a wide geographic precipitation gradient, limited but important differences in community assembly occur in restorations established with different ecotypes of the dominant grasses. However, our results also support the use of mixtures of nonlocal ecotypes of dominant grasses in restorations without risk to the assembling plant community. Future studies need to determine the potential for out- breeding effects among seed sources in mixed stands

    Contemplating Mindfulness at Work: An Integrative Review

    Get PDF
    Mindfulness research activity is surging within organizational science. Emerging evidence across multiple fields suggests that mindfulness is fundamentally connected to many aspects of workplace functioning, but this knowledge base has not been systematically integrated to date. This review coalesces the burgeoning body of mindfulness scholarship into a framework to guide mainstream management research investigating a broad range of constructs. The framework identifies how mindfulness influences attention, with downstream effects on functional domains of cognition, emotion, behavior, and physiology. Ultimately, these domains impact key workplace outcomes, including performance, relationships, and well-being. Consideration of the evidence on mindfulness at work stimulates important questions and challenges key assumptions within management science, generating an agenda for future research

    Genetic and environmental influences on stomates of big bluestem (Andropogon gerardii)

    Get PDF
    Big bluestem (Andropogon gerardii) is a dominant C4 prairie grass that has wide distribution and several genetically distinct ecotypes. Many of the ecotypic adaptations are related to water availability in the native environment. Stomates facilitate photosynthetic gas exchange and regulate water loss from the plant. As such, stomatal size and density represent possible adaptations to conserve water. We hypothesized drought-tolerant ecotypes of big bluestem would have fewer or smaller stomates compared to more mesic ecotypes. Five ecotypes of big bluestem were planted in four common gardens from western Kansas to southern Illinois, USA to determine genetic and environmental influences on stomates. Leaves of all ecotypes of A. gerardii were largely hypostomatous and genetics was a greater influence than environment for stomatal size and density. The drought-tolerant Sand bluestem had larger stomates on abaxial surfaces of leaves, but a lower density compared to most other ecotypes. The most mesic Illinois ecotype and the Kaw cultivar had the greatest density of stomates on abaxial surfaces of leaves. Sand Bluestem had a greater density of stomates on adaxial surfaces of leaves compared to all other ecotypes. Gas exchange measures followed patterns of stomate distribution, where abaxial CO2 uptake rates were greater than adaxial CO2 uptake rates, although differences between leaf surfaces was more pronounced in stomatal density than in CO2 uptake. There were minor differences in size and density of stomates among sites that corresponded with precipitation, although these differences were minor, illustrating the genetic underpinnings of stomates in big bluestem. There is a genetic predisposition for drought-tolerant ecotypes to have fewer stomates, illustrating an evolutionary adaptation to drought tolerance in an important prairie species

    Local adaptation, genetic divergence, and experimental selection in a foundation grass across the US Great Plains’ climate gradient

    Get PDF
    Many prior studies have uncovered evidence for local adaptation using reciprocal transplant experiments. However, these studies are rarely conducted for a long enough time to observe succession and competitive dynamics in a community context, limiting inferences for long-lived species. Furthermore, the genetic basis of local adaptation and genetic associations with climate has rarely been identified. Here, we report on a long-term (6-year) experiment conducted under natural conditions focused on Andropogon gerardii, the dominant grass of the North American Great Plains tallgrass ecosystem. We focus on this foundation grass that comprises 80% of tallgrass prairie biomass and is widely used in 20,000 km 2 of restoration. Specifically, we asked the following questions: (a) Whether ecotypes are locally adapted to regional climate in realistic ecological communities. (b) Does adaptive genetic variation underpin divergent phenotypes across the climate gradient? (c) Is there evidence of local adaptation if the plants are exposed to competition among ecotypes in mixed ecotype plots? Finally, (d) are local adaptation and genetic divergence related to climate? Reciprocal gardens were planted with 3 regional ecotypes (originating from dry, mesic, wet climate sources) of Andropogon gerardii across a precipitation gradient (500–1,200 mm/year) in the US Great Plains. We demonstrate local adaptation and differentiation of ecotypes in wet and dry environments. Surprisingly, the apparent generalist mesic ecotype performed comparably under all rainfall conditions. Ecotype performance was underpinned by differences in neutral diversity and candidate genes corroborating strong differences among ecotypes. Ecotype differentiation was related to climate, primarily rainfall. Without long-term studies, wrong conclusions would have been reached based on the first two years. Further, restoring prairies with climate-matched ecotypes is critical to future ecology, conservation, and sustainability under climate change

    No effect of seed source on multiple aspects of ecosystem functioning during ecological restoration: cultivars compared to local ecotypes of dominant grasses

    Get PDF
    Genetic principles underlie recommendations to use local seed, but a paucity of information exists on the genetic distinction and ecological consequences of using different seed sources in restorations. We established a field experiment to test whether cultivars and local ecotypes of dominant prairie grasses were genetically distinct and differentially influenced ecosystem functioning. Whole plots were assigned to cultivar and local ecotype grass sources. Three subplots within each whole plot were seeded to unique pools of subordinate species. The cultivar of the increasingly dominant grass, Sorghastrum nutans, was genetically different than the local ecotype, but genetic diversity was similar between the two sources. There were no differences in aboveground net primary production, soil carbon accrual, and net nitrogen mineralization rate in soil between the grass sources. Comparable productivity of the grass sources among the species pools for four years shows functional equivalence in terms of biomass production. Subordinate species comprised over half the aboveground productivity, which may have diluted the potential for documented trait differences between the grass sources to influence ecosystem processes. Regionally developed cultivars may be a suitable alternative to local ecotypes for restoration in fragmented landscapes with limited gene flow between natural and restored prairie and negligible recruitment by seed

    Environmental heterogeneity has a weak effect on diversity during community assembly in tallgrass prairie

    Get PDF
    Citation: Baer, S. G., Blair, J. M., & Collins, S. L. (2016). Environmental heterogeneity has a weak effect on diversity during community assembly in tallgrass prairie. Ecological Monographs, 86(1), 94-106. doi:10.1890/15-0888.1Understanding what constrains the persistence of species in communities is at the heart of community assembly theory and its application to conserving and enhancing biodiversity. The "environmental heterogeneity hypothesis" predicts greater species coexistence in habitats with greater resource variability. In the context of community assembly, environmental heterogeneity may influence the variety and strength of abiotic conditions and competitive interactions (environmental filters) to affect the relative abundance of species and biodiversity. We manipulated key resources that influence plant diversity in tallgrass prairie (i.e., soil depth and nitrogen availability) to increase environmental heterogeneity prior to sowing native prairie species into a former agricultural field. We compared variability in nutrient availability, aboveground annual net primary productivity (ANPP), and the composition of species between replicate plots containing soil heterogeneity manipulations and plots with no resource manipulations (n = 4 per treatment) during the first 15 yr of community assembly as a test of the "environmental heterogeneity hypothesis." The manipulations increased environmental heterogeneity, measured as the coefficient of variation in NO3-N availability and ANPP. Plant diversity, however, was similar and decayed exponentially and indiscriminately over time between the heterogeneity treatments. Species richness declined linearly over time in both heterogeneity treatments, but richness was higher in the more heterogeneous soil 2 yr following a second propagule addition 8 yr after the initial sowing. As a result, there was a lower rate of species loss over time in the more heterogeneous soil (0.60 species yr(-1)) relative to the control soil (0.96 species yr(-1)). Communities in each treatment exhibited strong convergence over time resulting from a shift in dominant species across all treatments and a gradual increase in the clonal C-4 grass, Andropogon gerardii. We attribute the weak effect of heterogeneity on diversity to increasing dominance of a clonal species, which decreased the scale of soil treatments relative to plant size, dispersal limitation, and absence of a key driver (grazing) known to increase plant diversity under a frequent fire regime. Thus, steering community assembly to attain high biodiversity may depend more on manipulating processes that reduce dominance and facilitate the arrival of new species than promoting environmental heterogeneity

    Adaptive genetic potential and plasticity of trait variation in the foundation prairie grass Andropogon gerardii across the US Great Plains’ climate gradient: Implications for climate change and restoration

    Get PDF
    Plant response to climate depends on a species’ adaptive potential. To address this, we used reciprocal gardens to detect genetic and environmental plasticity effects on phenotypic variation and combined with genetic analyses. Four reciprocal garden sites were planted with three regional ecotypes of Andropogon gerardii, a dominant Great Plains prairie grass, using dry, mesic, and wet ecotypes originating from western KS to Illinois that span 500–1,200 mm rainfall/year. We aimed to answer: (a) What is the relative role of genetic constraints and phenotypic plasticity in controlling phenotypes? (b) When planted in the homesite, is there a trait syndrome for each ecotype? (c) How are genotypes and phenotypes structured by climate? and (d) What are implications of these results for response to climate change and use of ecotypes for restoration? Surprisingly, we did not detect consistent local adaptation. Rather, we detected co-gradient variation primarily for most vegetative responses. All ecotypes were stunted in western KS. Eastward, the wet ecotype was increasingly robust relative to other ecotypes. In contrast, fitness showed evidence for local adaptation in wet and dry ecotypes with wet and mesic ecotypes producing little seed in western KS. Earlier flowering time in the dry ecotype suggests adaptation to end of season drought. Considering ecotype traits in homesite, the dry ecotype was characterized by reduced canopy area and diameter, short plants, and low vegetative biomass and putatively adapted to water limitation. The wet ecotype was robust, tall with high biomass, and wide leaves putatively adapted for the highly competitive, light-limited Eastern Great Plains. Ecotype differentiation was supported by random forest classification and PCA. We detected genetic differentiation and outlier genes associated with primarily precipitation. We identified candidate gene GA1 for which allele frequency associated with plant height. Sourcing of climate adapted ecotypes should be considered for restoration
    corecore