261 research outputs found

    Evaluating the Effect of Gum Arabic (Acacia Senegal) on Scopolamine-Induced Cognitive Impairment in Albino Mice: Assessment via the Forced Swim Test

    Get PDF
    BackgroundGum Arabic (GA), a natural exudate from Acacia Senegal, is a dietary precursor of butyrate—a short-chain fatty acid with demonstrated neuroprotective and epigenetic regulatory effects. This study investigates GA’s potential antidepressant properties in a murine model of scopolamine-induced cognitive impairment, addressing gaps in understanding its therapeutic role in depression.Materials and MethodsThirty albino mice (3–5 weeks old, 27 g average weight) were randomly allocated into six groups (n = 5/group). Groups received either Gum Arabic (GA, 10% ad libitum), piracetam (500 mg/kg/day orally), or tap water for 10 or 14 days. GA solutions were refreshed every 3 days, while piracetam was administered as a crushed tablet suspension. On the final day, mice were injected intraperitoneally with scopolamine hydrobromide (0.4 mg/kg) 45 minutes prior to the Forced Swim Test (FST). The FST was conducted in a glass cylinder (25–26°C water, 15 cm depth) over 6 minutes, with immobility time (seconds, minutes 2–6) recorded digitally and scored blindly.ResultsNo significant differences in immobility time were observed between GA-treated and control groups at 10 or 14 days (p > 0.05). Piracetam exhibited a non-significant reduction in immobility with shorter treatment duration (10 days) compared to its 14-day regimen. Both GA and piracetam groups showed lower mean immobility times relative to controls, though statistical significance was not achieved.ConclusionsGA treatment for 10 consecutive days showed no significant difference compared to the 14-day regimen. In contrast, piracetam’s antidepressant-like effects were more pronounced with shorter treatment duration. Future studies should prioritize prolonged GA administration to evaluate its potential therapeutic benefits

    Self-Organizing Networks in Complex Infrastructure Projects

    Get PDF
    While significant importance is given to establishing formal organizational and contractual hierarchies, existing project management techniques neglect the management of self-organizing networks in large-infrastructure projects. We offer a case-specific illustration of self-organization using network theory as an investigative lens. The findings have shown that these networks exhibit a high degree of sparseness, short path lengths, and clustering in dense “functional” communities around highly connected actors, thus demonstrating the small-world topology observed in diverse real-world self-organized networks. The study underlines the need for these non-contractual functions and roles to be identified and sponsored, allowing the self-organizing network the space and capacity to evolve

    miR-34a Promotes Vascular Smooth Muscle Cell Calcification by Downregulating SIRT1 (Sirtuin 1) and Axl (AXL Receptor Tyrosine Kinase).

    Get PDF
    Objective- Vascular calcification (VC) is age dependent and a risk factor for cardiovascular and all-cause mortality. VC involves the senescence-induced transdifferentiation of vascular smooth muscle cells (SMCs) toward an osteochondrogenic lineage resulting in arterial wall mineralization. miR-34a increases with age in aortas and induces vascular SMC senescence through the modulation of its target SIRT1 (sirtuin 1). In this study, we aimed to investigate whether miR-34a regulates VC. Approach and Results- We found that miR-34a and Runx2 (Runt-related transcription factor 2) expression correlates in young and old mice. Mir34a <sup>+/+</sup> and Mir34a <sup>-/-</sup> mice were treated with vitamin D, and calcium quantification revealed that Mir34a deficiency reduces soft tissue and aorta medial calcification and the upregulation of the VC Sox9 (SRY [sex-determining region Y]-box 9) and Runx2 and the senescence p16 and p21 markers. In this model, miR-34a upregulation was transient and preceded aorta mineralization. Mir34a <sup>-/-</sup> SMCs were less prone to undergo senescence and under osteogenic conditions deposited less calcium compared with Mir34a <sup>+/+</sup> cells. Furthermore, unlike in Mir34a <sup>+/+</sup> SMC, the known VC inhibitors SIRT1 and Axl (AXL receptor tyrosine kinase) were only partially downregulated in calcifying Mir34a <sup>-/-</sup> SMC. Strikingly, constitutive miR-34a overexpression to senescence-like levels in human aortic SMCs increased calcium deposition and enhanced Axl and SIRT1 decrease during calcification. Notably, we also showed that miR-34a directly decreased Axl expression in human aortic SMC, and restoration of its levels partially rescued miR-34a-dependent growth arrest. Conclusions- miR-34a promotes VC via vascular SMC mineralization by inhibiting cell proliferation and inducing senescence through direct Axl and SIRT1 downregulation, respectively. This miRNA could be a good therapeutic target for the treatment of VC

    Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells

    Get PDF
    Background: Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown. Results: Here we identify Heterochromatin Protein 1β (HP1β) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1β is differentially localized and differentially associated with chromatin. Deletion of HP1β, but not HP1aα, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1β has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1β in ESCs. The minor fraction of HP1β that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters. Conclusions: We demonstrate an unexpected duality in the role of HP1β: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1β function both depends on, and regulates, the pluripotent state

    The Impact of Clinical Pharmacist Diabetes Education on Medication Adherence in Patients with Type 2 Diabetes Mellitus: An Interventional Study from Khartoum, Sudan

    Get PDF
    Background: Continuous therapeutic care with good medication adherence is the cornerstone of management of all chronic diseases including diabetes. This study aimed to evaluate the impact of clinical pharmacist intervention on the medication adherence in individuals with type 2 diabetes (T2DM). Methods: This was a randomized, double-blind, controlled trial conducted at a diabetes clinic located at Omdurman Military Hospital, Sudan. Individuals with T2DM attending the diabetes clinic within 1 year were selected. The sample size was 364 participants (182 control and 182 interventional group). We used a pre-structured standardized questionnaire and checklist to collect the data. Data were analyzed by using the Statistical Package for the Social Sciences (SPSS) (version 28). Results: Majority, 76.4% (n = 278) were females, and they consisted of 80.8% (n = 147) of the interventional group and 72% of the controls. The mean age of the interventional group was 54.5 (±10) years; 31.9% (n = 58) of the interventional group had diabetes for 6–10 years, compared with 26.4% (n = 48) of the control group. Among the control group, the mean adherence score was 6.8 (±1.7) at baseline and it was 6.7 (±1.6) at the end of the study (p < 0.001), while in the interventional group, the mean adherence score was 6.8 (±1.7) at baseline and it was 7.4 (±1.5) at the end of the study (p < 0.001). Conclusion: Adherence score among the intervention group was increased significantly from baseline to the end of the study when compared to the control group.Scopu

    Mapping atopic dermatitis and anti–IL-22 response signatures to type 2–low severe neutrophilic asthma

    Get PDF
    Background: Transcriptomic changes in patients who respond clinically to biological therapies may identify responses in other tissues or diseases. Objective: We sought to determine whether a disease signature identified in atopic dermatitis (AD) is seen in adults with severe asthma and whether a transcriptomic signature for patients with AD who respond clinically to anti–IL-22 (fezakinumab [FZ]) is enriched in severe asthma. Methods: An AD disease signature was obtained from analysis of differentially expressed genes between AD lesional and nonlesional skin biopsies. Differentially expressed genes from lesional skin from therapeutic superresponders before and after 12 weeks of FZ treatment defined the FZ-response signature. Gene set variation analysis was used to produce enrichment scores of AD and FZ-response signatures in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes asthma cohort. Results: The AD disease signature (112 upregulated genes) encompassing inflammatory, T-cell, TH2, and TH17/TH22 pathways was enriched in the blood and sputum of patients with asthma with increasing severity. Patients with asthma with sputum neutrophilia and mixed granulocyte phenotypes were the most enriched (P < .05). The FZ-response signature (296 downregulated genes) was enriched in asthmatic blood (P < .05) and particularly in neutrophilic and mixed granulocytic sputum (P < .05). These data were confirmed in sputum of the Airway Disease Endotyping for Personalized Therapeutics cohort. IL-22 mRNA across tissues did not correlate with FZ-response enrichment scores, but this response signature correlated with TH22/IL-22 pathways. Conclusions: The FZ-response signature in AD identifies severe neutrophilic asthmatic patients as potential responders to FZ therapy. This approach will help identify patients for future asthma clinical trials of drugs used successfully in other chronic diseases

    In situ functionalization of a cellulosic-based activated carbon with magnetic iron oxides for the removal of carbamazepine from wastewater

    Get PDF
    The main goal of this work was to produce an easily recoverable waste-based magnetic activated carbon (MAC) for an efficient removal of the antiepileptic pharmaceutical carbamazepine (CBZ) from wastewater. For this purpose, the synthesis procedure was optimized and a material (MAC4) providing immediate recuperation from solution, remarkable adsorptive performance and relevant properties (specific surface area of 551 m2 g-1 and saturation magnetization of 39.84 emu g-1) was selected for further CBZ kinetic and equilibrium adsorption studies. MAC4 presented fast CBZ adsorption rates and short equilibrium times (< 30-45 min) in both ultrapure water and wastewater. Equilibrium studies showed that MAC4 attained maximum adsorption capacities (qm) of 68 ± 4 mg g-1 in ultrapure water and 60 ± 3 mg g-1 in wastewater, suggesting no significant interference of the aqueous matrix in the adsorption process. Overall, this work provides evidence of potential application of a waste-based MAC in the tertiary treatment of wastewaters.publishe

    Constructing custom-made radiotranscriptomic signatures of vascular inflammation from routine CT angiograms: a prospective outcomes validation study in COVID-19

    Get PDF
    Background Direct evaluation of vascular inflammation in patients with COVID-19 would facilitate more efficient trials of new treatments and identify patients at risk of long-term complications who might respond to treatment. We aimed to develop a novel artificial intelligence (AI)-assisted image analysis platform that quantifies cytokine-driven vascular inflammation from routine CT angiograms, and sought to validate its prognostic value in COVID-19.Methods For this prospective outcomes validation study, we developed a radiotranscriptomic platform that uses RNA sequencing data from human internal mammary artery biopsies to develop novel radiomic signatures of vascular inflammation from CT angiography images. We then used this platform to train a radiotranscriptomic signature (C19-RS), derived from the perivascular space around the aorta and the internal mammary artery, to best describe cytokine-driven vascular inflammation. The prognostic value of C19-RS was validated externally in 435 patients (331 from study arm 3 and 104 from study arm 4) admitted to hospital with or without COVID-19, undergoing clinically indicated pulmonary CT angiography, in three UK National Health Service (NHS) trusts (Oxford, Leicester, and Bath). We evaluated the diagnostic and prognostic value of C19-RS for death in hospital due to COVID-19, did sensitivity analyses based on dexamethasone treatment, and investigated the correlation of C19-RS with systemic transcriptomic changes.Findings Patients with COVID-19 had higher C19-RS than those without (adjusted odds ratio [OR] 2middot97 [95% CI 1middot43-6middot27], p=0middot0038), and those infected with the B.1.1.7 (alpha) SARS-CoV-2 variant had higher C19-RS values than those infected with the wild-type SARS-CoV-2 variant (adjusted OR 1middot89 [95% CI 1middot17-3middot20] per SD, p=0middot012). C19-RS had prognostic value for in-hospital mortality in COVID-19 in two testing cohorts (high [&gt;= 6middot99] vs low [&lt;6middot99] C19-RS; hazard ratio [HR] 3middot31 [95% CI 1middot49-7middot33], p=0middot0033; and 2middot58 [1middot10-6middot05], p=0middot028), adjusted for clinical factors, biochemical biomarkers of inflammation and myocardial injury, and technical parameters. The adjusted HR for in-hospital mortality was 8middot24 (95% CI 2middot16-31middot36, p=0middot0019) in patients who received no dexamethasone treatment, but 2middot27 (0middot69-7middot55, p=0middot18) in those who received dexamethasone after the scan, suggesting that vascular inflammation might have been a therapeutic target of dexamethasone in COVID-19. Finally, C19-RS was strongly associated (r=0middot61, p=0middot00031) with a whole blood transcriptional module representing dysregulation of coagulation and platelet aggregation pathways.Interpretation Radiotranscriptomic analysis of CT angiography scans introduces a potentially powerful new platform for the development of non-invasive imaging biomarkers. Application of this platform in routine CT pulmonary angiography scans done in patients with COVID-19 produced the radiotranscriptomic signature C19-RS, a marker of cytokine-driven inflammation driving systemic activation of coagulation and responsible for adverse clinical outcomes, which predicts in-hospital mortality and might allow targeted therapy. Funding Engineering and Physical Sciences Research Council, British Heart Foundation, Oxford BHF Centre of Research Excellence, Innovate UK, NIHR Oxford Biomedical Research Centre, Wellcome Trust, Onassis Foundation.Copyright (c) 2022 The Author(s). Published by Elsevier Ltd.This is an Open Access article under the CC BY 4.0 license

    Genomic and Expression Analyses Define MUC17 and PCNX1 as Predictors of Chemotherapy Response in Breast Cancer

    Get PDF
    corecore