98 research outputs found

    Brexit is changing the scenario for private equity in the UK

    Get PDF
    There are both threats and opportunities for private equity firms and their portfolio companies, write Mike Wright, Kevin Amess, Nick Bacon, John Gilligan and Nick Wilso

    Measuring galaxy [OII] emission line doublet with future ground-based wide-field spectroscopic surveys

    Get PDF
    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7< z<2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [OII] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [OII] (3727,3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies about the choice of the resolution for future spectrographs for BAO surveys. For bright [OII] emitter surveys ([OII] flux ~30.10^{-17} erg /cm2/s like SDSS-IV/eBOSS), a resolution of R~3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [OII] emitter surveys ([OII] flux ~10.10^{-17} erg /cm2/s like DESi), the detection improves continuously with resolution, so we recommend the highest possible resolution, the limit being given by the number of pixels (4k by 4k) on the detector and the number of spectroscopic channels (2 or 3).Comment: 5 pages, 1 figur

    Brexit, private equity and management

    Get PDF
    We analyse the expected impact of Brexit on private equity and its implications for management research. Specifically, we explore the implications for PE funds and funding, and at the portfolio firm level with respect to employment and performance

    Prediction of near-term climate change impacts on UK wheat quality and the potential for adaptation through plant breeding

    Get PDF
    Wheat is a major crop worldwide, mainly cultivated for human consumption and animal feed. Grain quality is paramount in determining its value and downstream use. While we know that climate change threatens global crop yields, a better understanding of impacts on wheat end-use quality is also critical. Combining quantitative genetics with climate model outputs, we investigated UK-wide trends in genotypic adaptation for wheat quality traits. In our approach, we augmented genomic prediction models with environmental characterisation of field trials to predict trait values and climate effects in historical field trial data between 2001 and 2020. Addition of environmental covariates, such as temperature and rainfall, successfully enabled prediction of genotype by environment interactions (G × E), and increased prediction accuracy of most traits for new genotypes in new year cross validation. We then extended predictions from these models to much larger numbers of simulated environments using climate scenarios projected under Representative Concentration Pathways 8.5 for 2050–2069. We found geographically varying climate change impacts on wheat quality due to contrasting associations between specific weather covariables and quality traits across the UK. Notably, negative impacts on quality traits were predicted in the East of the UK due to increased summer temperatures while the climate in the North and South-west may become more favourable with increased summer temperatures. Furthermore, by projecting 167,040 simulated future genotype–environment combinations, we found only limited potential for breeding to exploit predictable G × E to mitigate year-to-year environmental variability for most traits except Hagberg falling number. This suggests low adaptability of current UK wheat germplasm across future UK climates. More generally, approaches demonstrated here will be critical to enable adaptation of global crops to near-term climate change

    The mysterious morphology of MRC0943-242 as revealed by ALMA and MUSE

    Get PDF
    © 2016 ESO. We present a pilot study of the z = 2.923 radio galaxy MRC0943-242, where we combine information from ALMA and MUSE data cubes for the first time. Even with modest integration times, we disentangle the AGN and starburst dominated components. These data reveal a highly complex morphology as the AGN, starburst, and molecular gas components show up as widely separated sources in dust continuum, optical continuum, and CO line emission observations. CO(1-0) and CO(8-7) line emission suggest that there is a molecular gas reservoir offset from both the dust and the optical continuum that is located ~90 kpc from the AGN. The UV line emission has a complex structure in emission and absorption. The line emission is mostly due to a large scale ionisation cone energised by the AGN, and a Lya emitting bridge of gas between the radio galaxy and a heavily star-forming set of components. Strangely, the ionisation cone has no Lya emission. We find this is due to an optically thick layer of neutral gas with unity covering fraction spread out over a region of at least ~100 kpc from the AGN. Other less thick absorption components are associated with Lya emitting gas within a few tens of kpc from the radio galaxy and are connected by a bridge of emission. We speculate that this linear structure of dust, Lya and CO emission, and the redshifted absorption seen in the circum nuclear region may represent an accretion flow feeding gas into this massive AGN host galaxy

    Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland

    Get PDF
    Author Posting. © The Authors, 2009. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 3 (2010): 182-186, doi:10.1038/ngeo764.The recent rapid increase in mass loss from the Greenland Ice Sheet is primarily attributed to an acceleration of outlet glaciers. One possible cause is increased melting at the ice/ocean interface driven by the synchronous warming of subtropical waters offshore of Greenland. This hypothesis is largely untested, however, because of the lack of observations from Greenland’s glacial fjords and our limited understanding of their dynamics. Here, we present new ship-based and moored oceanographic data, collected in Sermilik Fjord, a large glacial fjord in East Greenland, showing that subtropical waters are present throughout the fjord and are continuously replenished via a wind-driven exchange with the shelf, where they occur year-round. The temperature and rapid renewal of these waters suggest that, at present, they drive enhanced submarine melting at the terminus. Key controls on the melting rate are the volume and properties of subtropical waters on the shelf and the patterns of the along-shore winds, suggesting the glaciers’ acceleration was triggered by a combination of atmospheric and oceanic changes. These measurements provide evidence of rapid advective pathway for the transmission of oceanic variability to the ice-sheet margins and highlight an important process that is missing from prognostic ice-sheet models.F.S. acknowledges support from WHOI’s Ocean and Climate Change Institute’s Arctic Research Initiative and from NSF OCE 0751896, and G.S.H and L.A.S from NASA’s Cryospheric Sciences Program. Funding for the hooded seal deployments was obtained from the International Governance and Atlantic Seal Research Program, Fisheries and Oceans, Canada, to G. B. S. and to the Greenland Institute of Natural Resources to A. R. A

    A randomised controlled trial assessing the use of citalopram, sertraline, fluoxetine and mirtazapine in preventing relapse in primary care patients who are taking long-term maintenance antidepressants (ANTLER : ANTidepressants to prevent reLapse in dEpRession): study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Antidepressants are used both for treating acute episodes and for prophylaxis to prevent future episodes of depression, also called maintenance treatment. This article describes the protocol for a randomised controlled trial (ANTLER: ANTidepressants to prevent reLapse in dEpRession) to investigate the clinical effectiveness and cost-effectiveness in UK primary care of continuing on long-term maintenance antidepressants compared with a placebo in preventing relapse of depression in those who have taken antidepressants for more than 9 months and who are currently well enough to consider stopping maintenance treatment. METHODS/DESIGN: The ANTLER trial is an individually randomised, double-blind, placebo-controlled trial in which participants are randomised to remain on active medication or to take an identical placebo after a tapering period of 2 months. Eligible participants are those who: are between the ages of 18 and 74 years; have had at least two episodes of depression; and have been taking antidepressants for 9 months or more and are currently taking citalopram 20 mg, sertraline 100 mg, fluoxetine 20 mg or mirtazapine 30 mg but are well enough to consider stopping their medication. The participants will be followed up at 6, 12, 26, 39 and 52 weeks. The primary outcome will be the time in weeks to the beginning of the first episode of depression after randomisation. This will be measured using a retrospective version of the Clinical Interview Schedule-Revised administered at 12, 26, 39 and 52 weeks. Secondary outcomes will include depressive and anxiety symptoms, adverse effects, withdrawal symptoms, emotional processing tasks, quality of life and the resources and costs used. We will also perform a cost-effectiveness analysis based on results of the trial. DISCUSSION: The ANTLER trial findings will inform primary care prescribing practice by providing a valid and generalisable estimate of the clinical effectiveness and cost-effectiveness of long-term maintenance treatment with antidepressants in UK primary care. TRIAL REGISTRATION: Controlled Trials ISRCTN Registry, ISRCTN15969819. Registered on 21 September 2015

    Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study.

    Get PDF
    BACKGROUND: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). OBJECTIVE: We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. METHODS: We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. RESULTS: Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. CONCLUSION: APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment.T.C. is supported by National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland. A.C. has a Wellcome Trust Postdoctoral Training Fellowship for Clinicians (103413/Z/13/Z). K.O. is supported by funding from BBSRC, MRC, Wellcome Trust and GSK. R.D. and D.S.K are funded by National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK. C.S. and S.E. are supported by the German Federal Ministry of Education and Research (BMBF 01 EO 0803 grant to the Center of Chronic immunodeficiency and BMBF 01GM1111B grant to the PID-NET initiative). S.N.F is supported in part by the Southampton UK National Institute for Health Research (NIHR) Wellcome Trust Clinical Research Facility and NIHR Respiratory Biomedical Research Unit. M.A.A.I. is funded by NHS Innovation London and King’s College Hospital Charitable Trust. A.F., S.L., A.D., F.R-L and S.K. are supported by the European Union’s 7th RTD Framework Programme (ERC advanced grant PID-IMMUNE contract 249816) and a government grant managed by the French Agence Nationale de la Recherche as part of the "Investments for the Future" program (ANR-10-IAHU-01). S.L. is supported by the Agence Nationale de la Recherche (ANR) (ANR-14-CE14-0028-01), the Foundation ARC pour la Recherche sur le Cancer (France), the Rare Diseases Foundation (France) and François Aupetit Association (France). S.L. is a senior scientist and S.K is a researcher at the Centre National de la Recherche Scientifique-CNRS (France). A.D. and S.K. are supported by the “Institut National de la Santé et de la Recherche Médicale". S.K. also supported by the Fondation pour la Recherche Médicale (grant number: ING20130526624), la Ligue Contre le Cancer (Comité de Paris) and the Centre de Référence Déficits Immunitaires Héréditaires (CEREDIH). S.O.B is supported by the Higher Education Funding Council for England. B.V. is supported by the UK Biotechnology and Biological Sciences Research Council [BB/I007806/1], Cancer Research UK [C23338/A15965) and the National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre. B.V. is consultant to Karus Therapeutics (Oxford, UK). S.N. is a Wellcome Trust Senior Research Fellow in Basic Biomedical Science (095198/Z/10/Z). S.N. is also supported by the European Research Council Starting grant 260477, the EU FP7 collaborative grant 261441 (PEVNET project) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, UK. A.M.C. is funded by the Medical Research Council, British Lung Foundation, University of Sheffield and Cambridge NIHR-BRC. Research in A.M.C. laboratory has received non-commercial grant support from GSK, Novartis, and MedImmune.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jaci.2016.06.02
    corecore