The next generation of wide-field spectroscopic redshift surveys will map the
large-scale galaxy distribution in the redshift range 0.7< z<2 to measure
baryonic acoustic oscillations (BAO). The primary optical signature used in
this redshift range comes from the [OII] emission line doublet, which provides
a unique redshift identification that can minimize confusion with other single
emission lines. To derive the required spectrograph resolution for these
redshift surveys, we simulate observations of the [OII] (3727,3729) doublet for
various instrument resolutions, and line velocities. We foresee two strategies
about the choice of the resolution for future spectrographs for BAO surveys.
For bright [OII] emitter surveys ([OII] flux ~30.10^{-17} erg /cm2/s like
SDSS-IV/eBOSS), a resolution of R~3300 allows the separation of 90 percent of
the doublets. The impact of the sky lines on the completeness in redshift is
less than 6 percent. For faint [OII] emitter surveys ([OII] flux ~10.10^{-17}
erg /cm2/s like DESi), the detection improves continuously with resolution, so
we recommend the highest possible resolution, the limit being given by the
number of pixels (4k by 4k) on the detector and the number of spectroscopic
channels (2 or 3).Comment: 5 pages, 1 figur