373 research outputs found

    Quantity and functionality of protein fractions in chicken breast fillets affected by white striping

    Get PDF
    Recently, white striations parallel to muscle fibers direction have been observed on the surface of chicken breast, which could be ascribed to intensive growth selection. The aim of this study was to evaluate the effect of white striping on chemical composition with special emphasis on myofibrillar and sarcoplasmic protein fractions that are relevant to the processing features of chicken breast meat. During this study, a total of 12 pectoralis major muscles from both normal and white striped fillets were used to evaluate chemical composition, protein solubility (sarcoplasmic, myofibrillar, and total protein solubility), protein quantity (sarcoplasmic, myofibrillar, and stromal proteins), water holding capacity, and protein profile by SDS-PAGE analysis. White-striped fillets exhibited a higher percentage of moisture (75.4 vs. 73.8%; P < 0.01), intramuscular fat (2.15 vs. 0.98%; P < 0.01), and collagen (1.36 vs. 1.22%; P < 0.01), and lower content of protein (18.7 vs. 22.8%; P < 0.01) and ash (1.14 vs. 1.34%; P < 0.01), in comparison with normal fillets. There was a great decline in myofibrillar (14.0 vs. 8.7%; P < 0.01) and sarcoplasmic (3.2 vs. 2.6%; P < 0.01) content and solubility as well as an increase in cooking loss (33.7 vs. 27.4%; P < 0.05) due to white striping defects. Moreover, gel electrophoresis showed that the concentration of 3 myofibrillar proteins corresponding to actin (42 kDa); LC1, slow-twitch light chain myosin (27.5 kDa); and LC3, fast-twitch light chain myosin (16 kDa), and almost all sarcoplasmic proteins were lower than normal. In conclusion, the findings of this study revealed that chicken breast meat with white striping defect had different chemical composition (more fat and less protein) and protein quality and quantity (low content of myofibrillar proteins and high content of stromal proteins) with respect to normal meat. Furthermore, white striped fillets had lower protein functionality (higher cooking loss). All the former changes indicate that white striping has great impact on quality characteristics of chicken breast meat

    Replant problems in South Tyrol: role of fungal pathogens and microbial populations in conventional and organic apple orchards

    Get PDF
    South Tyrol, the main Italian apple growing area, is characterised by an highly intensive soil cultivation. Previous investigations shows the existence of replant disorders although it has not been evaluated which are the main causes. A survey has been carried out in this area with two main aims I) to evaluate the role of soil borne pathogens in apple replant disease and II) to evaluate the effect of soil management toward soil borne pathogens causing replant diseases. The experimental sites were chosen in order to obtain three couples of contiguous conventional and organic apple orchards. Soil sickness test with young apple plants gave a significant growth reduction in all soil samples if compared to a peat control. Among all root colonising fungi (Fusarium oxysporum, F. solani, Aphanomyces sp., Cy/incrocarpon sp., Rhizoctonia sp. and Pythium sp.) some Rhizoctonia solani strains and all Pythium spp. were the most pathogenic. In all cases organic management seems to reduce the soil sickness severity caused by root rot fungal pathogens

    Histology, composition, and quality traits of chicken Pectoralis major muscle affected by wooden breast abnormality

    Get PDF
    Only a few years ago, the poultry industry began to face a recent abnormality in breast meat, known as wooden breast, which frequently overlaps with white striping. This study aimed to assess the impact of wooden breast abnormality on quality traits of meat. For this purpose, 32 normal (NRM), 32 wooden (WB), and 32 wooden and white-striped (WB/WS) Pectoralis major muscles were selected from the same flock of heavy broilers (males, Ross 708, weighing around 3.7 kg) in the deboning area of a commercial processing plant at 3 h postmortem and used to assess histology, proximate (moisture, protein, fat, ash, and collagen) and mineral composition (Mg, K, P, Na and Ca), sarcoplasmic and myofibrillar protein patterns, and technological traits of breast meat. Compared to the normal group, WB/WS fillets showed more severe histological lesions characterized by fiber degeneration, fibrosis, and lipidosis, coupled with a significantly harder texture. With regard to proximate and mineral composition, abnormal samples exhibited significantly (P < 0.001) higher moisture, fat, and collagen contents coupled with lower (P < 0.001) amounts of protein and ash. Furthermore, increased calcium (131 vs. 84 mg kg(-1); P < 0.05) and sodium (741 vs. 393 mg kg(-1); P < 0.001) levels were found in WB/WS meat samples. The SDS-PAGE analysis revealed a significantly lower amount of calcium-ATPase (SERCA, 114 kDa), responsible for the translocation of Ca ions across the membrane, in normal breasts compared to abnormal ones. As for meat quality traits, fillets affected by wooden abnormality exhibited significantly (P < 0.001) higher ultimate pH and lower water-holding/water-binding capacity. In particular, compared to normal, abnormal samples showed reduced marinade uptake coupled with increased drip loss and cooking losses as well. In conclusion, this study revealed that meat affected by wooden breast or both wooden breast and white striping abnormalities exhibit poorer nutritional value, harder texture, and impaired water-holding capacity

    Pasta consumption and connected dietary habits: Associations with glucose control, adiposity measures, and cardiovascular risk factors in people with type 2 diabetes—TOSCA.IT study

    Get PDF
    Background: Pasta is a refined carbohydrate with a low glycemic index. Whether pasta shares the metabolic advantages of other low glycemic index foods has not really been investigated. The aim of this study is to document, in people with type-2 diabetes, the consumption of pasta, the connected dietary habits, and the association with glucose control, measures of adiposity, and major cardiovascular risk factors. Methods: We studied 2562 participants. The dietary habits were assessed with the European Prospective Investigation into Cancer and Nutrition (EPIC) questionnaire. Sex-specific quartiles of pasta consumption were created in order to explore the study aims. Results: A higher pasta consumption was associated with a lower intake of proteins, total and saturated fat, cholesterol, added sugar, and fiber. Glucose control, body mass index, prevalence of obesity, and visceral obesity were not significantly different across the quartiles of pasta intake. No relation was found with LDL cholesterol and triglycerides, but there was an inverse relation with HDL-cholesterol. Systolic blood pressure increased with pasta consumption; but this relation was not confirmed after correction for confounders. Conclusions: In people with type-2 diabetes, the consumption of pasta, within the limits recommended for total carbohydrates intake, is not associated with worsening of glucose control, measures of adiposity, and major cardiovascular risk factors

    Looking for peptides from rice starch processing by-product: Bioreactor production, anti-tyrosinase and anti-inflammatory activity, and in silico putative taste assessment

    Get PDF
    One of the major challenges for the modern society, is the development of a sustainable economy also aiming at the valorization of agro-industrial by-products in conjunction with at a significant reduction of generated residues from farm to retail. In this context, the present study demonstrates a biotechnological approach to yield bioactive peptides from a protein fraction obtained as a by-product of the rice starch production. Enzymatic hydrolysis, with the commercial proteases Alcalase and Protamex, were optimized in bioreactor up to 2 L of volume. The two best digestates, selected with respect to peptide release and extract antioxidant capacity, were further fractionated (cut-offs of 10, 5, and 1 kDa) via cross-flow filtration. Amino acid composition indicated that most of the fractions showed positive nutritional characteristics, but a putative bitter taste. A fraction obtained with Alcalase enzyme (retentate 8 kDa) exerted anti-inflammatory potential, while the smaller molecular weight fractions (retentate 1-5 kDa and permeate &lt; 1 kDa) were more active in tyrosinase inhibition. The latter were further sub-fractionated by size-exclusion chromatography. From the 15 most anti-tyrosinase sub-fractions, 365 peptide sequences were identified via liquid chromatography coupled with high resolution mass spectrometry. The present data support the possible exploitation of bioactive peptide from rice starch by-product as ingredients into food, nutraceutical, pharmaceutical, and cosmetic formulations

    Immunoinformatic analysis of the SARS-CoV-2 envelope protein as a strategy to assess cross-protection against COVID-19

    Get PDF
    Envelope protein of coronaviruses is a structural protein existing in both monomeric and homo-pentameric form. It has been related to a multitude of roles including virus infection, replication, dissemination and immune response stimulation. In the present study, we employed an immunoinformatic approach to investigate the major immunogenic domains of the SARS-CoV-2 envelope protein and map them among the homologue proteins of coronaviruses with tropism for animal species that are closely inter-related with the human beings population all over the world. Also, when not available, we predicted the envelope protein structural folding and mapped SARS-CoV-2 epitopes. Envelope sequences alignment provides evidence of high sequence homology for some of the investigated virus specimens; while the structural mapping of epitopes resulted in the interesting maintenance of the structural folding and epitope sequence localization also in the envelope proteins scoring a lower alignment score. In line with the One-Health approach, our evidences provide a molecular structural rationale for a potential role of taxonomically related coronaviruses in conferring protection from SARS-CoV-2 infection and identifying potential candidates for the development of diagnostic tools and prophylactic-oriented strategies

    Histone Acetylation Defects in Brain Precursor Cells: A Potential Pathogenic Mechanism Causing Proliferation and Differentiation Dysfunctions in Mitochondrial Aspartate-Glutamate Carrier Isoform 1 Deficiency

    Get PDF
    Mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) deficiency is an ultra-rare genetic disease characterized by global hypomyelination and brain atrophy, caused by mutations in the SLC25A12 gene leading to a reduction in AGC1 activity. In both neuronal precursor cells and oligodendrocytes precursor cells (NPCs and OPCs), the AGC1 determines reduced proliferation with an accelerated differentiation of OPCs, both associated with gene expression dysregulation. Epigenetic regulation of gene expression through histone acetylation plays a crucial role in the proliferation/differentiation of both NPCs and OPCs and is modulated by mitochondrial metabolism. In AGC1 deficiency models, both OPCs and NPCs show an altered expression of transcription factors involved in the proliferation/differentiation of brain precursor cells (BPCs) as well as a reduction in histone acetylation with a parallel alteration in the expression and activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this study, histone acetylation dysfunctions have been dissected in in vitro models of AGC1 deficiency OPCs (Oli-Neu cells) and NPCs (neurospheres), in physiological conditions and following pharmacological treatments. The inhibition of HATs by curcumin arrests the proliferation of OPCs leading to their differentiation, while the inhibition of HDACs by suberanilohydroxamic acid (SAHA) has only a limited effect on proliferation, but it significantly stimulates the differentiation of OPCs. In NPCs, both treatments determine an alteration in the commitment toward glial cells. These data contribute to clarifying the molecular and epigenetic mechanisms regulating the proliferation/differentiation of OPCs and NPCs. This will help to identify potential targets for new therapeutic approaches that are able to increase the OPCs pool and to sustain their differentiation toward oligodendrocytes and to myelination/remyelination processes in AGC1 deficiency, as well as in other white matter neuropathologies

    Microbial fermentation of industrial rice-starch byproduct as valuable source of peptide fractions with health-related activity

    Get PDF
    The rice-starch processing industry produces large amounts of a protein-rich byproducts during the conversion of broken rice to powder and crystal starch. Given the poor protein solubility, this material is currently discarded or used as animal feed. To fully exploit rice’s nutritional properties and reduce this waste, a biotechnological approach was adopted, inducing fermentation with selected microorganisms capable of converting the substrate into peptide fractions with health-related bioactivity. Lactic acid bacteria were preferred to other microorganisms for their safety, efficient proteolytic system, and adaptability to different environments. Peptide fractions with different molecular weight ranges were recovered from the fermented substrate by means of cross-flow membrane filtration. The fractions displayed in vitro antioxidant, antihypertensive, and anti-tyrosinase activities as well as cell-based anti-inflammatory and anti-aging effects. In the future, the peptide fractions isolated from this rice byproduct could be directly exploited as health-promoting functional foods, dietary supplements, and pharmaceutical preparations. The suggested biotechnological process harnessing microbial bioconversion may represent a potential solution for many different protein-containing substrates currently treated as byproducts (or worse, waste) by the food industry

    Targeted quantitative metabolic profiling of brain-derived cell cultures by semi-automated MEPS and LC-MS/MS

    Get PDF
    The accurate characterisation of metabolic profiles is an important prerequisite to determine the rate and the efficiency of the metabolic pathways taking place in the cells. Changes in the balance of metabolites involved in vital processes such as glycolysis, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), as well as in the biochemical pathways related to amino acids, lipids, nucleotides, and their precursors reflect the physiological condition of the cells and may contribute to the development of various human diseases. The feasible and reliable measurement of a wide array of metabolites and biomarkers possesses great potential to elucidate physiological and pathological mechanisms, aid preclinical drug development and highlight potential therapeutic targets. An effective, straightforward, sensitive, and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was developed for the simultaneous quali-quantitative analysis of 41 compounds in both cell pellet and cell growth medium obtained from brain-derived cell cultures. Sample pretreatment miniaturisation was achieved thanks to the development and optimisation of an original extraction/purification approach based on digitally programmed microextraction by packed sorbent (eVol®-MEPS). MEPS allows satisfactory and reproducible clean-up and preconcentration of both low-volume homogenate cell pellet lysate and cell growth medium with advantages including, but not limited to, minimal sample handling and method sustainability in terms of sample, solvents, and energy consumption. The MEPS-LC-MS/MS method showed good sensitivity, selectivity, linearity, and precision. As a proof of concept, the developed method was successfully applied to the analysis of both cell pellet and cell growth medium obtained from a line of mouse immortalised oligodendrocyte precursor cells (OPCs; Oli-neu cell line), leading to the unambiguous determination of all the considered target analytes. This method is thus expected to be suitable for targeted, quantitative metabolic profiling in most brain cell models, thus allowing accurate investigations on the biochemical pathways that can be altered in central nervous system (CNS) neuropathologies, including e.g., mitochondrial respiration and glycolysis, or use of specific nutrients for growth and proliferation, or lipid, amino acid and nucleotide metabolism
    • …
    corecore