95 research outputs found

    Flexural capacity of bi-directional GFRP strengthened RC beams with end anchorages: experimental and theoretical studies

    Get PDF
    This paper presents the results of experimental and theoretical studies on the flexural capacity of reinforced concrete (RC) beams strengthened using externally bonded bi-directional glass fibre reinforced polymer (GFRP) composites and different end anchorage systems. A series of nine RC beams with a length of 1600mm and a cross-section of 200mm depth and 100mm width were prepared and externally strengthened in flexure with bi-directional GFRP composites. These strengthened beams were anchored with three different end anchorage systems namely closed GFRP wraps, GFRP U-wraps, and mechanical anchors. All these beams were tested with four-point bending system up to failure. The experimental results are compared with the theoretical results obtained using the relevant design guidelines. The experimental results demonstrate a significant increase in the flexural performance of the GFRP strengthened beams with regard to the ultimate load carrying capacity and stiffness. The results also show that GFRP strengthened beams without end anchorages experienced intermediate concrete (IC) debonding failure at the GFRP plate end, whereas, all the GFRP Strengthened beams with different end anchorage systems failed in rupture of GFRP with concrete crushing. The theoretical results revealed no significant difference among the relevant design guidelines with regard to the predicted ultimate moment capacities of the bi-directional GFRP strengthened RC beams. However, the results show that ACI Committee 440 (2008) design recommendation provides reasonably acceptable predictions for the ultimate moment capacities of the tested beams strengthened externally with bi-directional GFRP reinforcement followed by FIB Bulletin 14 (2001) and eventually JSCE (1997). The research work presented in this manuscript is authentic and could contribute to the understanding of the overall behaviour of RC beams strengthened with FRP and different end anchorage systems under flexural loading

    Pulse velocity assessment of early age creep of concrete

    Get PDF
    Creep of concrete can have damaging effects by inducing deformations that may contribute or eventually lead to cracks, which influence concrete durability, steel reinforcement exposure to corrosion, and aesthetic damage to architectural buildings. This research investigated the early age creep deformation in concrete samples made with normal, lightweight (Lytag), recycled concrete, and recycled asphalt aggregates using ultrasonic pulse velocity measurements. Creep was achieved by applying a load corresponding to 30% of the strength of concrete to 100 × 250 mm prisms. The compressive load was applied from 24 h after mixing and up to 27 days. The results and analysis of measurements obtained for stress development, specific creep (creep strain per unit stress), and ultrasonic pulse velocity measured up to 27 days after load application are presented. Empirical models that allow the assessment of creep of concrete using ultrasonic pulse velocity measurements are also presented. Early age specific creep is higher for recycled asphalt aggregate than Lytag aggregate and recycled concrete aggregate concretes, which are higher than gravel concrete. Measurements of ultrasonic pulse velocity could be used to determine creep but further work to refine this technique is required

    Properties of cement mortar incorporated high volume fraction of GGBFS and CKD from 1 day to 550 days

    Get PDF
    This study aims to investigate the effect of cement replacement with high volume fraction of ground granulated blast furnace slag (GGBFS) and cement kiln dust (CKD) on mechanical, durability and microstructural properties of cement mortar from 1day to 550 days. Compressive strength and ultrasonic pulse velocity (UPV) were used to evaluate the mortars' performance. Besides, statistical analyses were conducted to predict mortars' mechanical and durability performance as well as investigate the influence of mortars’ properties (mixture and curing time) on their performance. The results indicated that replacing the cement with up to 60% GGBFS and CKD showed a comparable behavior to the cement after 28 days of curing onward. The statistical analysis revealed that the developed models achieved high level of agreement between the predicted and observed results with a coefficient of determination (R2) of more than 0.97. The findings in this study announced on the development of promising binder that can be used in different construction sectors with the benefits of reducing the CO2 emissions

    Freeze/thaw protection of concrete with optimum rubber crumb content

    Get PDF
    This research looks at utilising an optimum quantity of rubber crumb as an air entraining ad-mixture in concrete, thus providing maximum freeze-thaw protection and maximum strength. Microscopic and chemical analysis was carried out on the rubber sample to investigate how rubber crumb entrains air and reacts with the surrounding concrete. The work contained two pilot studies that informed the main test methodology. The pilot studies examined the air content/compressive strength relationship (1) and freeze/thaw cycle durations (2). Pilot study 1 informed the main test program by identifying an optimum addition of rubber crumb to a concrete mix, which was found to be 0.6% by weight of concrete. The main test investigated the use of rubber crumb in providing freeze-thaw protection of a C40 concrete mix after 3 days of curing. A freeze-thaw test was carried out on three separate batches of concrete containing washed rubber crumb, unwashed rubber crumb and plain concrete respectively. It was found rubber crumb was effective in providing freeze/thaw protection in both cases. This work builds on recent work to identify the best practical solution for reducing waste and providing the maximum freeze/thaw protection for a cleaner production process
    • 

    corecore