282 research outputs found

    NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways

    Get PDF
    The network analysis tools (NeAT) (http://rsat.ulb.ac.be/neat/) provide a user-friendly web access to a collection of modular tools for the analysis of networks (graphs) and clusters (e.g. microarray clusters, functional classes, etc.). A first set of tools supports basic operations on graphs (comparison between two graphs, neighborhood of a set of input nodes, path finding and graph randomization). Another set of programs makes the connection between networks and clusters (graph-based clustering, cliques discovery and mapping of clusters onto a network). The toolbox also includes programs for detecting significant intersections between clusters/classes (e.g. clusters of co-expression versus functional classes of genes). NeAT are designed to cope with large datasets and provide a flexible toolbox for analyzing biological networks stored in various databases (protein interactions, regulation and metabolism) or obtained from high-throughput experiments (two-hybrid, mass-spectrometry and microarrays). The web interface interconnects the programs in predefined analysis flows, enabling to address a series of questions about networks of interest. Each tool can also be used separately by entering custom data for a specific analysis. NeAT can also be used as web services (SOAP/WSDL interface), in order to design programmatic workflows and integrate them with other available resources

    NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways

    Get PDF
    The network analysis tools (NeAT) (http://rsat.ulb.ac.be/neat/) provide a user-friendly web access to a collection of modular tools for the analysis of networks (graphs) and clusters (e.g. microarray clusters, functional classes, etc.). A first set of tools supports basic operations on graphs (comparison between two graphs, neighborhood of a set of input nodes, path finding and graph randomization). Another set of programs makes the connection between networks and clusters (graph-based clustering, cliques discovery and mapping of clusters onto a network). The toolbox also includes programs for detecting significant intersections between clusters/classes (e.g. clusters of co-expression versus functional classes of genes). NeAT are designed to cope with large datasets and provide a flexible toolbox for analyzing biological networks stored in various databases (protein interactions, regulation and metabolism) or obtained from high-throughput experiments (two-hybrid, mass-spectrometry and microarrays). The web interface interconnects the programs in predefined analysis flows, enabling to address a series of questions about networks of interest. Each tool can also be used separately by entering custom data for a specific analysis. NeAT can also be used as web services (SOAP/WSDL interface), in order to design programmatic workflows and integrate them with other available resources

    The Effect of Preoperative Ketorolac on WBC Response and Pain in Laparoscopic Surgery for Endometriosis

    Get PDF
    Surgical stress causes changes in the composition of white blood cells (WBCs). Ketorolac is believed to have analgesic effects and to reduce the stress response and may therefore improve postoperative outcomes. The aim of this study was to assess the effect of preoperative ketorolac on the WBC subsets in patients who had laparoscopic surgery for endometriosis. Fifty patients who had laparoscopic surgery for endometriosis were randomly assigned to one of two groups: the ketorolac group (n = 25) received ketorolac 0.5 mg/kg before the induction of anesthesia, and the control group (n = 25) received saline. White cell count, differential, and pathology studies were done immediately after surgery, on postoperative day 1, and on postoperative day 3. We compared the baseline values within and between the two groups. We also assessed postoperative pain and side effects. The time that elapsed before the first patient request for analgesia, total meperidine dose and VAS (Visual Analog Scale) for postoperative pain were significantly lower in the ketorolac group than in the control group. Compared to the pre- surgical values, there was an increase in total WBC count and percentage of neutrophils, but a decrease in percentages of lymphocytes, monocytes, eosinophils, basophils, and leucocytes. Total WBC count, neutrophils, monocytes, eosinophils and leucocytes showed significant differences between the two groups. The incidences of postoperative side effects, such as nausea, dizziness, headache, and shoulder pain were not different between the groups. Preoperative ketorolac reduced postoperative pain and influenced the WBC response in laparoscopic surgery for endometriosis

    Exposure of Endothelial Cells to Physiological Levels of Myeloperoxidase-Modified LDL Delays Pericellular Fibrinolysis

    Get PDF
    Blood fluidity is maintained by a delicate balance between coagulation and fibrinolysis. The endothelial cell surface is a key player in this equilibrium and cell surface disruptions can upset the balance. We investigated the role of pericellular myeloperoxidase oxidized LDLs (Mox-LDLs) in this balance.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Identification of protein complexes from co-immunoprecipitation data

    Get PDF
    Motivation: Advanced technologies are producing large-scale protein–protein interaction data at an ever increasing pace. A fundamental challenge in analyzing these data is the inference of protein machineries. Previous methods for detecting protein complexes have been mainly based on analyzing binary protein–protein interaction data, ignoring the more involved co-complex relations obtained from co-immunoprecipitation experiments

    Identification of microRNA activity by Targets' Reverse EXpression

    Get PDF
    Motivation: Non-coding microRNAs (miRNAs) act as regulators of global protein output. While their major effect is on protein levels of target genes, it has been proven that they also specifically impact on the messenger RNA level of targets. Prominent interest in miRNAs strongly motivates the need for increasing the options available to detect their cellular activity

    MCL-CAw: A refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure

    Get PDF
    Abstract Background The reconstruction of protein complexes from the physical interactome of organisms serves as a building block towards understanding the higher level organization of the cell. Over the past few years, several independent high-throughput experiments have helped to catalogue enormous amount of physical protein interaction data from organisms such as yeast. However, these individual datasets show lack of correlation with each other and also contain substantial number of false positives (noise). Over these years, several affinity scoring schemes have also been devised to improve the qualities of these datasets. Therefore, the challenge now is to detect meaningful as well as novel complexes from protein interaction (PPI) networks derived by combining datasets from multiple sources and by making use of these affinity scoring schemes. In the attempt towards tackling this challenge, the Markov Clustering algorithm (MCL) has proved to be a popular and reasonably successful method, mainly due to its scalability, robustness, and ability to work on scored (weighted) networks. However, MCL produces many noisy clusters, which either do not match known complexes or have additional proteins that reduce the accuracies of correctly predicted complexes. Results Inspired by recent experimental observations by Gavin and colleagues on the modularity structure in yeast complexes and the distinctive properties of "core" and "attachment" proteins, we develop a core-attachment based refinement method coupled to MCL for reconstruction of yeast complexes from scored (weighted) PPI networks. We combine physical interactions from two recent "pull-down" experiments to generate an unscored PPI network. We then score this network using available affinity scoring schemes to generate multiple scored PPI networks. The evaluation of our method (called MCL-CAw) on these networks shows that: (i) MCL-CAw derives larger number of yeast complexes and with better accuracies than MCL, particularly in the presence of natural noise; (ii) Affinity scoring can effectively reduce the impact of noise on MCL-CAw and thereby improve the quality (precision and recall) of its predicted complexes; (iii) MCL-CAw responds well to most available scoring schemes. We discuss several instances where MCL-CAw was successful in deriving meaningful complexes, and where it missed a few proteins or whole complexes due to affinity scoring of the networks. We compare MCL-CAw with several recent complex detection algorithms on unscored and scored networks, and assess the relative performance of the algorithms on these networks. Further, we study the impact of augmenting physical datasets with computationally inferred interactions for complex detection. Finally, we analyse the essentiality of proteins within predicted complexes to understand a possible correlation between protein essentiality and their ability to form complexes. Conclusions We demonstrate that core-attachment based refinement in MCL-CAw improves the predictions of MCL on yeast PPI networks. We show that affinity scoring improves the performance of MCL-CAw.http://deepblue.lib.umich.edu/bitstream/2027.42/78256/1/1471-2105-11-504.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/2/1471-2105-11-504-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/3/1471-2105-11-504-S2.ZIPhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/4/1471-2105-11-504.pdfPeer Reviewe

    RSAT: regulatory sequence analysis tools

    Get PDF
    The regulatory sequence analysis tools (RSAT, http://rsat.ulb.ac.be/rsat/) is a software suite that integrates a wide collection of modular tools for the detection of cis-regulatory elements in genome sequences. The suite includes programs for sequence retrieval, pattern discovery, phylogenetic footprint detection, pattern matching, genome scanning and feature map drawing. Random controls can be performed with random gene selections or by generating random sequences according to a variety of background models (Bernoulli, Markov). Beyond the original word-based pattern-discovery tools (oligo-analysis and dyad-analysis), we recently added a battery of tools for matrix-based detection of cis-acting elements, with some original features (adaptive background models, Markov-chain estimation of P-values) that do not exist in other matrix-based scanning tools. The web server offers an intuitive interface, where each program can be accessed either separately or connected to the other tools. In addition, the tools are now available as web services, enabling their integration in programmatic workflows. Genomes are regularly updated from various genome repositories (NCBI and EnsEMBL) and 682 organisms are currently supported. Since 1998, the tools have been used by several hundreds of researchers from all over the world. Several predictions made with RSAT were validated experimentally and published
    corecore