240 research outputs found

    The prototypes of tobacco users scale (Potus) for cigarette smoking and e-cigarette use: Development and validation

    Get PDF
    Endorsing prototypes of cigarette smokers predicts cigarette smoking, but less is known about prototypes of users of other tobacco products. Our study sought to establish the reliability and validity of a measure of prototypes of smokers and e-cigarette users. Participants were from a national survey of smokers and non-smokers (n = 1414), a randomized clinical trial (RCT) of adult smokers (n = 2149), and adolescent children of adults in the trial (n = 112). The Prototypes of Tobacco Users Scale (POTUS) has four positive adjectives (cool, sexy, smart, and healthy) and four negative adjectives (disgusting, unattractive, immature, and inconsiderate) describing cigarette smokers and e-cigarette users. Confirmatory factor analyses identified a two-factor solution. The POTUS demonstrated strong internal consistency reliability in all three samples (median α = 0.85) and good test–retest reliability among adults in the RCT (median r = 0.61, 1–4 weeks follow-up). In the RCT, smokers more often agreed with negative prototypes for smokers than for e-cigarette users (mean = 2.03 vs. 1.67, p < 0.05); negative prototypes at baseline were also associated with more forgoing of cigarettes and making a quit attempt at the end of the trial (Week 4 follow-up). The POTUS may be useful to public health researchers seeking to design interventions that reduce tobacco initiation or cessation through the manipulation of tobacco user prototypes

    Impacts of climate change on national biodiversity population trends

    Get PDF
    Climate change has had well-documented impacts on the distribution and phenology of species across many taxa, but impacts on species’ abundance, which relates closely to extinction risk and ecosystem function, have not been assessed across taxa. In the most comprehensive multi-taxa comparison to date, we modelled variation in national population indices of 501 mammal, bird, aphid, butterfly and moth species as a function of annual variation in weather variables, which through time allowed us to identify a component of species’ population growth that can be associated with post-1970s climate trends. We found evidence that these climate trends have significantly affected population trends of 15.8% of species, including eight with extreme (> 30% decline per decade) negative trends consistent with detrimental impacts of climate change. The modelled effect of climate change could explain 48% of the significant across-species population decline in moths and 63% of the population increase in winged aphids. The other taxa did not have significant across-species population trends or consistent climate change responses. Population declines in species of conservation concern were linked to both climatic and non-climatic factors respectively accounting for 42 and 58% of the decline. Evident differential impacts of climate change between trophic levels may signal the potential for future ecosystem disruption. Climate change has therefore already driven large-scale population changes of some species, had significant impacts on the overall abundance of some key invertebrate groups and may already have altered biological communities and ecosystems in Great Britain

    DNA repair modulates the vulnerability of the developing brain to alkylating agents

    Get PDF
    Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag[superscript −/−]) or O6-methylguanine methyltransferase (Mgmt[superscript −/−]), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt−/− neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag[superscript −/−] neurons were for the most part significantly less sensitive than wild type or Mgmt[superscript −/−] neurons to MAM and HN2. Aag[superscript −/−] neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt[superscript −/−] mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM-treated Aag[superscript −/−] or MGMT-overexpressing (Mgmt[superscript Tg+]) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in Mgmt[superscript Tg+] mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant.United States. Army Medical Research and Materiel Command (Contract/Grant/Intergovernmental Project Order DAMD 17-98-1-8625)United States. National Institutes of Health (grants CA075576)United States. National Institutes of Health (RO1 C63193)United States. National Institutes of Health (P30 CA043703

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Combining Optimization and Randomization Approaches for the Design of Clinical Trials

    Get PDF
    t Intentional sampling methods are non-randomized procedures that select a group of individuals for a sample with the purpose of meeting specific prescribed criteria. In this paper we extend previous works related to intentional sampling, and address the problem of sequential allocation for clinical trials with few patients. Roughly speaking, patients are enrolled sequentially, according to the order in which they start the treatment at the clinic or hospital. The allocation problem consists in assigning each new patient to one, and only one, of the alternative treatment arms. The main requisite is that the profiles in the alternative arms remain similar with respect to some relevant patients’ attributes (age, gender, disease, symptom severity and others). We perform numerical experiments based on a real case study and discuss how to conveniently set up perturbation parameters, in order to yield a suitable balance between optimality – the similarity among the relative frequencies of patients in the several categories for both arms, and decoupling – the absence of a tendency to allocate each pair of patients consistently to the same arm

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore