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Abstract Intentional sampling methods are non-randomized procedures that select
a group of individuals for a sample with the purpose of meeting specific prescribed
criteria. In this paper we extend previous works related to intentional sampling,
and address the problem of sequential allocation for clinical trials with few patients.
Roughly speaking, patients are enrolled sequentially, according to the order in which
they start the treatment at the clinic or hospital. The allocation problem consists
in assigning each new patient to one, and only one, of the alternative treatment
arms. The main requisite is that the profiles in the alternative arms remain similar
with respect to some relevant patients’ attributes (age, gender, disease, symptom
severity and others). We perform numerical experiments based on a real case study
and discuss how to conveniently set up perturbation parameters, in order to yield a
suitable balance between optimality – the similarity among the relative frequencies
of patients in the several categories for both arms, and decoupling – the absence of
a tendency to allocate each pair of patients consistently to the same arm.

We describe a possible allocation that the experimenter judges to be free of covariate inter-
ference as haphazard. Randomization may be a convenient way of producing a haphazard
design. We argue that it is the haphazard nature, and not the randomization, that is im-
portant. It seems therefore that a reasonable approximation to an optimal design would be
to select a haphazard design. ... a detailed Bayesian consideration of possible covariates
would almost certainly not be robust in that the analysis might be sensitive to small changes
in judgments about covariates.
Lindley (1982, p.438-439) - The Role of Randomization in Inference.
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14.1 Introduction
Lindley (1991, p.47-48) illustrates the celebrated Simpson’s paradox with a med-

ical trial example. In such example, the association between two variables, Treat-
ment and Recovery from a given illness, is reversed if the data is aggregated or
disaggregated over a confounding variable, Sex, see also Yule (1903). Random-
ized and double-blind (masked) clinical trials are designed to shield the experiment
from undesired bias effects caused by undue interference or deliberate manipulation
of confounding variables. The introduction of randomized tests, first proposed in
Peirce and Jastrow (1885) and popularized by Fisher (1935), has established a new
paradigm for statistically valid empirical research. However, the standard sampling
methods by randomized design are not always appropriate; for example, they have
limited application when cost, ethical or inherent rarity constraints only allow the
use of very small samples.

Intentional sampling methods are non-randomized procedures that select or allo-
cate groups of individuals with the purpose of meeting specific prescribed criteria.
Such methods can overcome some of the aforementioned limitations of standard
randomized designs for statistical experiments. However, intentional or purposive
sampling methods pose several interesting questions concerning statistical infer-
ence, as extensively discussed in Basu and Ghosh (1988), see also Schreuder et al.
(1993, Sec.6.2), Brewer and Särndal (1983) and following discussions in Madow et
al. (1983).

This paper focus on sequential allocation methods, following previous research
in the field of intentional sampling presented in Fossaluza et al. (2009) and Lauretto
et al. (2012). Particularly, we discuss an allocation scheme that combines aspects of
intentional and randomized sampling methods.

The paper is organized as follows. Section 14.2 provides a brief discussion of
sampling design under the perspective of linear regression superpopulation model.
Section 14.3 elucidates how to use linear regression models to handle compositional
data – which is of direct interest for our case study. Section 14.4 illustrates our ap-
proach of combining purposive sampling with random perturbation techniques for
“providing samples which are approximately balanced”, as stated by Royall and Pf-
effermann (1982, p.20), in an application case concerning a clinical trial allocation.
Section 14.5 presents and discusses our numerical experiments and results.

14.2 Linear Regression Superpopulation Model
We will introduce the basic ideas for our approach in the context of the Linear

Regression Superpopulation Model, as presented by Royall and Pfeffermann (1982),
Pereira and Rodrigues (1983) and Tam (1986).

E
([

ys
yr

])
=

[
Xs
Xr

]
β , Cov

([
ys
yr

])
=

[
Vs,s Vs,r
V ′s,r Vr,r

]
.

Row i of the n×m matrix X contains the explanatory variables for individual i,
and is known for the entire population. The response variable, yi, is observed for the
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individuals in a given sample, S, indexed by i in s = [1,2, . . . ,m], and unobserved
for the remaining individuals, indexed by i in r = [m+ 1,m+ 2, . . . ,n]. (Whatever
the sample, s = [i1, i2, . . . , im], we can always reorder the indices so to place them
first.) We partition all vectors and matrices of the model accordingly and assume
that Vs,s > 0.

We seek an optimal linear predictor, p′ys, for a quantity of interest, κ = q′y, and
define the auxiliary matrices: t ′ = [t ′s, t

′
r] = [p′−q′s,−q′r] and M =

(
X ′sV

−1
s,s Xs

)−1.
Since probability expectation is a linear operator, that is, for any random (vec-

tor) variable, z, E(Az+b) = AE(z)+b, one can compute the expected value of the
prediction error,

E
(
t ′y
)
=
(
t ′X
)

β =
(
t ′sXs−q′rXr

)
β .

Hence, for a general parameter β , the predictor p is unbiased if and only if it obeys
the balance constraint,

t ′X = t ′sXs−q′rXr = p′Xs−q′X = 0 .

Solving the normal linear system for the minimum variance unbiased estimator
problem at hand yields the solution

t∗s = (p∗−qs) =V−1
s,s
(
Vs,r +XsU

(
X ′r−X ′sV

−1
s,s Vs,r

))
qr .

Finally, we can write the optimal (minimum-variance unbiased) prediction for
the quantity of interest, κ = q′y, as

κ̂ = q′sys +q′r
(

Xrβ̂ +Vr,sV−1
s,s

(
ys−Xsβ̂

))
, where β̂ = MXsV−1

s,s ys , and

Var(κ̂) = q′r
(
Vr,r−Vr,sV−1

s,s V ′r,s
)

qr +q′r
(
Xr−Vr,sV−1

s,s Xs
)

M
(
Xr−Vr,sV−1

s,s Xs
)′

qr .

The balance and optimality conditions obtained above can be used for choos-
ing a good predictor p, but they can also be used to select a “good” sample
s = [i1, i2, . . . , im]. Many survey sampling studies are interested in population totals,
where q = 1, that is, κ = 1′y where 1 is the column vector of ones of appropriate di-
mension in the context. In this case, the balance equation takes the form p′Xs = 1′X .

Robustness is also a desirable characteristic of a survey design. Imagine our
model is misspecified, say by omission of important covariates, Z, in the expanded
covariate matrix X̃ = [X ,Z]. Without loss of generality, assume that we use “orthog-
onal” covariates, for witch X ′Z = 0 and Z′Z = I. We would like to still be able to
make a useful prediction. In general, this desire is just wishful thinking if we know
nothing about the ignored covariates in Z. Now, assume that we fix p as the ex-
pansion predictor, p = (N/n)1, and choose a representative sample, Xs, for which
the sample totals are (approximately) balanced, that is, p′Xs ≈ 1′X . If we are lucky
enough, the balance equation will also (approximately) hold for the omitted covari-
ates, that is, (N/n)1′Zs ≈ 1′Z. For further developments of this idea, see Royall and
Pfeffermann (1982), Pereira and Rodrigues (1983) and Tam (1986).

But how do we manage to get lucky? According to Lindley (1982, p.438-439),
that seems to be the role of randomization in experimental design. For complemen-
tary and mutually supportive views of the role of randomization in statistical design
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of experiments, see Bonassi et al. (2009) and Stern (2008, 2011a). There is a vast
literature in design-based random sampling that aims to achieve this goal. In this
paper, we explore the use of purposive sampling. For a more extensive discussion
of this approach and a complete application case, see Lauretto et al. (2012).

14.3 Compositional Models and Simplex Geometry
We begin this section reviewing some basic notions of Compositional Models

and Simplex Geometry, as presented in Aitchison (1986) and Aitchison (2008). The
open (m-1)-Simplex is the set Sm−1 =

{
x ∈ Rm |x > 0 ∧ 1′x = 1

}
, where 1 in the

vector of ones of appropriate dimension. The closure-to-unity transformation, from
Rm
+ to Sm−1, the additive logratio transformation, from Sm−1 to the unrestricted

Rm−1 space, and the centered logratio transformation, from Sm−1 to a hyperplane
through the origin of Rm, are defined as

clu(x) = (1/1′x)x , alr(x) = log((1/xm)[x1, . . .xm−1] ) ,
and clr(x) = log((1/g(x))[x1 . . .xm] ) , g(x) = (x1x2 . . .xm)

1/m .

It is easy to check the normalization conditions stating that 1′clu(x) = 1 and
1′clr(x) = 0, as well the following expressions of the inverse transformations

alr−1(z) = clu(exp( [z1, . . .zm−1,0] ) ) , clr−1(z) = clu(exp( [z1, . . .zm] ) ) .

We can introduce the power (scalar multiplication) operator, ?, and the pertur-
bation (vector summation) operation, ⊕, providing a vector space structure for the
Simplex, namely, α ?x = clu([xα

1 , . . .x
α
m]) and x⊕y = clu([x1y1, . . .xmym]). The per-

turbation operation can be interpreted as the effect of proportional decay rates in
y over the fractional composition in x. The power operation can be interpreted as
the α-times repeated effect of proportional decay rates. The perturbation operation
defines an Abelian (commutative) group, where the identity element is e = (1/m)1,
and the inverse of a perturbation is given by x−1 = clu([1/x1, . . .1/xm]). Hence, we
define the difference x	 y = clu([x1/y1, . . .xm/ym]).

Next, we equip the Simplex with a metric structure. More specifically, we search
for a distance function, DS(x,y), that exhibits the invariance properties that are most
adequate for the purpose of compositional analysis. The most important of these
invariance properties are:
- Perturbation invariance: For any perturbation, z, DS(x⊕ z,y⊕ z) = DS(x,y).
- Permutation invariance: For any permutation matrix, P, DS(Px,Py) = DS(x,y).
- Power scaling: For any α > 0, (1/α)DS(α ? x,α ? y) = DS(x,y).

The following distance function exhibits all of these desirable invariance proper-
ties, as well as the standard properties required from a distance function, like posi-
tivity, symmetry and the triangular inequality.

D2
S(x,y) = [clr(x)− clr(y)]′ I [clr(x)− clr(y)] =

= [alr(x)− alr(y)]′H−1 [alr(x)− alr(y)] , Hi, j = 2δi, j +1(1−δi, j) .
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We can further extend the mathematical structure over the Simplex to a vector
(finite Hilbert) space, defining the inner product

〈x,y〉S = clr(x)′ I clr(y) = alr(x)′H−1 alr(y) .

Defining the norm, ‖x‖2
S = 〈x,x〉S, it is easy to check that DS(x,y) = ‖x	 y‖S

and that ‖x‖S = DS(x,e). Finally, we can compose the additive logratio transforma-
tion with an orthogonalization operation that translates Aitchison’s inner product
for the Simplex to the standard inner product for the unrestricted Euclidean space.
For example, we can use the Cholesky factorization L′L = H to define the isometric
logratio transformation ilr(x) = L−talr(x), where L−t denotes the transpose of L−1.
In this case, since H−1 = L−1L−t , we have

〈x,y〉S = ilr(x)′L(L−1L−t)L′ilr(y) = ilr(x)′ I ilr(y) = 〈ilr(x), ilr(y)〉E .

All these compatible vector space structures make it easy to develop linear re-
gression models for compositional data, see Egozcue et al. (2000) and Pawlowsky-
Glahn and Egozcue (2001). In the most simple terms, in the Euclidean space we can
use the standard linear properties of the expectation operator, and consequent trans-
formation properties for the covariance operator, as reviewed in the previous section.
These properties suffice to prove Gauss-Markov theorem, allowing the computation
of optimal unbiased estimators via least-squares linear algebra, see Whittle (2000,
Sec.14.4). Hence, we can map compositional data, naturally presented in Sm−1, into
Rm or Rm−1, analyse the data with linear regression models and, if so desired, map
the models back to the Simplex.

The centered logratio transformation from Sm−1 to Rm requires regression models
under linear equality constraints. Meanwhile, the additive logratio transformation
allows the use of standard (unconstrained) regression models in Rm−1. Moreover, in
many practical applications, the last coordinate in the Simplex, xm, is a significant
proportion that may represent the preponderant component, an aggregate of many
residual or indiscriminated components, a dispersion medium, etc. In this case, the
coordinates generated by the additive logratio transformation have an intuitive in-
terpretation. Furthermore, under appropriate conditions, the random variates corre-
sponding to these coordinates in the statistical model have probability distributions
with interesting statistical properties, as analysed in Aitchison and Shen (1980) and
Pereira and Stern (2008, Sec.7). Finally, the isometric logratio transformation pro-
vides orthogonal coordinates in the unrestricted Euclidean space. However, in many
practical applications, these orthogonal coordinates have a less intuitive interpreta-
tion than the oblique coordinates given by the additive logratio transformation.

Nevertheless, all these approaches will define compatible statistical models, ren-
der coherent statistical inferences, and mutually support each other for rich inter-
pretations. In particular, it is easy to translate to the context of compositional data
the results obtained in the last section concerning best unbiased predictors and well
balanced samples. This will be the starting point of the next section.
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14.4 Haphazard Intentional Allocation for Clinical Trials
In the setting discussed in Section 14.2, we choose purposively a sample S that

represents well the covariates X , that is, so that (N/n)1′Xs ≈ 1′X . (We could even
seek a sample that, simultaneously, also approximately minimizes the variance of
our prediction κ̂ for κ = 1′y.) However, at the same time, we would like to use
some sort of randomization technique in order to obtain a sample S that is hap-
hazard with respect to the omitted covariates, so that it is (probably) balanced, that
is, (N/n)1′Z ≈ 1′Z. In this section, we introduce a technique for conciliating these
goals, in a clinical trial case study.

The case study discussed in this work is the allocation of patients with Obsessive-
compulsive disorder (OCD) between two treatment arms, see Fossaluza et al.
(2009). Patients are enrolled sequentially, according to the order in which they start
the treatment at the clinic or hospital. The allocation problem consists in assigning
each new patient to one, and only one, of two alternative treatments (arms). A req-
uisite stated by the trial coordinators is that profiles in the alternative arms remained
similar with respect to some relevant patients’ factors. In other words, it was ex-
pected that the compositional vectors (i.e. relative frequencies of patients in each
variable category) remained similar each other as new patients were allocated. The
available clinical trial dataset consists of T = 277 patients.

Roughly speaking, the factors and respective number of classes considered are:
1. Current patient’s age (a): three classes; 2. Treatment history (h): three classes; 3.
OCD symptom severity (v): nine classes; 4. Gender (g): two classes. A more detailed
description on these factors and respective categories may be found in Fossaluza et
al. (2009).

After some patients are already in treatment, we denote by na
i , nh

i , nv
i and ng

i
the quantities of patients already allocated to arm i belonging to each category of
factors age, history, severity and gender. For example, na

1 = [na
1,1,n

a
1,2,n

a
1,3] denotes

the quantity vector of patients in arm 1 belonging to the three age classes.
In order to yield allocations with approximately the same number of patients in

each arm, we also consider, besides the previous factors, the sample size (z) in each
arm. With that purpose we define qi as the total number of patients allocated to arm
i, and the vector of total allocation to arm i and its complement, nz

i = [qi,(q1 +q2−
qi)].

The complete profile of arm i, i = 1,2, is stored in the concatenated vec-
tor ni = [na

i ,n
h
i ,n

v
i ,n

g
i ,n

z
i ]. In order to avoid empty categories in the allocation

process, we may add to vector n a ground-state or weak-prior, see Pereira and
Stern (2008), in the form of vector w = [wa,wh,wv,wg,wz]. For any character
ξ in the set {a,h,v,g,z}, where factor wξ has κ(ξ ) categories, we take wξ =
[1/κ(ξ ), . . . ,1/κ(ξ )]. From vectors n and w we obtain the regularized proportions
vector: pi = [pa

i , ph
i , pv

i , pg
i , pz

i ], where pξ

i = clu(nξ

i +wξ

i ), ξ ∈ {a,h,v,g,z}.
We define the heterogeneity measure between arms 1 and 2 by the function:

∆(p1, p2) =
1
5

(
Ds(pa

1, pa
2)+Ds(ph

1, ph
2)+Ds(pv

1, pv
2)+Ds(pg

1, pg
2)+Ds(pz

1, pz
2)
)
.

(14.1)
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Let us consider a new patient that enrolls the study and must be allocated to one
of arms 1 or 2. We denote by xa, xh, xv, xg and xz the binary vectors indicating to
which categories the new patient belongs. For example, in vector xa = [xa

1,x
a
2,x

a
3],

xa
k = 1 if and only if the patient belongs to age category k, k ∈ [1, . . . ,κ(a)]. Vector

xz is set as xz = [1,0]. So, the relevant information about the new patient is carried
by the vector x = [xa,xh,xv,xg,xz].

The arm allocation decision for the new patient is taken as follows.

1. For j = 1,2, consider the allocation of the new patient, x, in arm j, that is,
for i = 1,2, make mi = ni +δ (i, j)x and perform the following steps:

a) For i = 1,2 and ξ ∈ {a,h,v,g,z}, compute the regularized proportions

pξ

i = clu(mξ

i +wξ

i ) ;

b) For i = 1,2, set pi = [pa
i , ph

i , pv
i , pg

i , pz
i ] ;

c) For i = 1,2, set bi = [ui,1− ui], where ui are independently generated from
Uni f orm(0,1) distribution;

d) For ε ∈ [0,1], compute the ε-perturbed distance

dε( j) = (1− ε)∆(p1, p2)+ εDs(b1,b2).

2. Choose the allocation j that minimizes dε( j), assign the new patient to the cor-
responding arm, and update vector n accordingly.

The perturbation parameter ε introduces a random component in the allocation
method. The higher the value of ε , the higher the proportion of randomness in the
allocation. For ε = 0, we have a deterministic intentional allocation scheme, as de-
scribed in Fossaluza et al. (2009), and for ε = 1, we have the pure random allocation
method, which consists in assign each patient randomly (with probability 0.5) to one
of the two arms.

14.5 Numerical Experiments
We analyse the performance of our haphazard intentional allocation procedure,

for ε ∈ {0,0.005,0.01,0.05,0.25,1}. The experiments were conducted as follows.
We generated P = 300 random permutations of the original data, each one repre-
senting a possible sequence of patients arriving to the hospital or clinic. For each
permutation, we ran the pure random method and the haphazard intentional alloca-
tion method H = 300 times. For ε = 0, the (deterministic) procedure was executed
only once.

Two criteria were used to analyse the performance of the haphazard intentional
allocation method: Optimality and Decoupling. The first criterion, Optimality, is
based on the distance ∆ defined in Equation 14.1 and concerns the difference among
the relative frequencies of patients in the several categories for both arms.

The second criterion, Decoupling, concerns the absence of a tendency to allocate
each pair patients to the same arm. In this work, we use the Yule’s coefficient of
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association (Q), see Yule (1912), in the following way. After each batch of H runs
of haphazard allocations, for each pair of patients, A and B, we build a 2×2 contin-
gency table z where zi j denotes the number of runs patient A was assigned to arm i
and patient B was assigned to arm j (i, j = 1,2).

The Yule’ coefficient, given by Q = (z11z22−z21z12)/(z11z22+z21z12), measures
the balance among the number of pairs in agreement and disagreement. It ranges
in the interval [−1,1]; equals zero when the numbers of agreement and disagree-
ment pairs is equal; and is maximum (−1 or +1) in the presence of total negative
(complete disagreement) or positive (complete agreement) association.

Figures 14.1 and 14.2 present, respectively, the 5%,25%,50%,75%,95% empir-
ical percentiles of ∆ and Q. In Figure 14.1 the quantiles for ∆ span the H haphazard
allocations. In Figure 14.2 the quantiles for Q span the T (T −1)/2 pairs of patients,
where the Q for each pair is computed over the H haphazard allocations. Each bar
height corresponds to the median over the P random permutations, and the vertical
line in each bar represent the corresponding (5%,95%) percentiles. Continuous and
dashed horizontal lines in Figure 14.1 represent, respectively, the median of distance
∆ for the deterministic intentional allocation method, ε = 0, and the (5%,95%) per-
centiles over P random permutations. Figure 14.2 omits the percentile 50%, since
the Yule’s coefficient medians were close to zero for all allocation methods.

Figure 14.1 shows a clear difference between the optimality (∆ ) achieved by the
haphazard intentional allocation method and the pure random method. Notice that,
for ε ≤ 0.01, even the 5% percentile of ∆ for the pure random method is larger than
the 95% percentile of the haphazard intentional method. We also notice that, for
the same range of ε , the optimality achieved by the haphazard intentional method
comes close to the optimality achieved by the deterministic method, only showing
moderate degradation in the 95% percentile.

Figure 14.2 shows that, for the lower range of ε , the absolute values of Yule’s
association coefficient (Q) tend to be high, indicating that the haphazard intentional
allocation method, with too small an ε , tends to allocate the same pairs of patients
in the same arms, that is, it fails to achieve the desired decoupling property. On
the other hand, moderate values of ε attenuate these dependencies, making the hap-
hazard intentional allocation method perform in the decoupling criterion almost as
well as the the pure random method. Indeed, for ε ≥ 0.05, the distribution of Yule’s

Fig. 14.1 The 5%, 25%, 50%,
75% and 95% percentiles
for ∆ optimality, with ε ∈
{0,0.005,0.01,0.05,0.25,1}.
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Q is very close to the pure random method – which provides our benchmark for
decoupling performance.

It is worth mentioning that, for the haphazard intentional allocation method, the
percentiles intervals (represented by vertical lines in each bar) are, in general, similar
to the pure random method (except for the 5% and 95% percentiles of Q for ε ≤
0.01). This result suggests that the proposed method is highly adaptive.

The results of these numerical experiments suggest that, under an appropriate cal-
ibration of the perturbation parameter ε , the haphazard intentional allocation method
proposed in this paper has the remarkable property of being able to conciliate the
performance on optimality achieved by the deterministic intentional allocation with
the performance on decoupling achieved by the pure random allocation method.

14.6 Acknowledgements and Final Remarks
The present article does not include Bayesian models incorporating prior infor-

mation although, formally, such models only generalize the implicit uninformative
priors. Despite our focus in this paper have been on the conceptual and practical
discussions concerning randomization and intentional sampling, it is perfectly pos-
sible to extend our analysis to more general Bayesian models, a work we intend
to do following Bolfarine et al. (1987). The article Six Approaches to Enumerative
Survey Sampling, by Brewer and Särndal (1983), see also Schreuder et al. (1993,
Sec.6.2), has been used for the last 30 years as a classification scheme concern-
ing, among other things, the role of randomization in survey sampling. However,
it is not straightforward to fit the allocation method we have just presented in that
classification scheme. We hope to explore this theme in following articles.

As duly noted by an anonymous referee, an important topic for further research
concerns a comparative analysis of the logical status of all the aforementioned
randomization, intentional and mixed-randomization sampling methods according
to several possible theoretical and epistemological frameworks. In the standard

Fig. 14.2 The 5%, 25%, 50%,
75% and 95% percentiles for
Yule’s Q decoupling, with ε ∈
{0,0.005,0.01,0.05,0.25,1}.



182 Fossaluza, V., Lauretto, M. S., Pereira, C. A. B. and Stern, J. M.

Bayesian decision theoretical framework, randomization methods may not be in-
compatible with optimal decisions, and may even be able to address some extra-
theoretical demands. However, they can never find a direct intra-theoretical justifi-
cation; see DeGroot (1970, Sec.8.5, p.128-130). Nevertheless, the standard decision
theoretical framework can be expanded by taking into account games with multiple
adversarial opponents, see Morgenstern (2008), Morgenstern and Neumann (1947)
and Stern (2008b, Sec.6.8). Bonassi et al. (2009) explore this expanded decision-
theoretical framework, survey the pertinent literature, and suggest interesting ap-
proaches for further development. Finally, the function and logical status of ran-
domization methods can be analyzed in the framework of systems theory, see for
example Pearl (2000, p.16-20, 340-348) and Stern (2008).

All the aforementioned theoretical frameworks offer alternative ways to deal with
concepts related to decoupling, separation, shielding from undue interference, or
defensive strategies against players with hostile objectives. Hence, logical analyses
conducted in these frameworks should be able to provide guidelines for the coherent
development and application of intentional but haphazard sampling methods in the
scope of Bayesian statistics.

The anonymous referee also stresses the importance of carefully analyzing the
ethical consequences of using alternative sampling methods. In the context of clin-
ical trials, the experimenter must always consider at least two competing (if not
conflicting) objectives: On one hand, the primary objective of any clinical trial is
the acquisition of of valid or objective knowledge, see Stern (2014). On the other
hand, providing appropriate health care for all patients participating in the trial is a
second goal that should never be neglected, see Kadane and Sedransk (1980) and
Kadane (1996). The use of intentional sampling methods is a technical solution that
has the potential of facilitating the reconciliation of such multiple objectives. More-
over, these considerations can be extended to multi-phase and adaptive trials. All
these are topics that certainly deserve further research.

The authors are grateful for support received from EACH-USP, the School of
Humanities Arts and Sciences; IME-USP, the Institute of Mathematics and Statistics
of the University of São Paulo; FAPESP, the São Paulo Research Foundation (grants
Reg-2012/04788-9 and CEPID-2013/07375-0); and CNPq, the Brazilian National
Council for Scientific and Technological Development (grants PQ-306318-2008-3
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