9 research outputs found

    Field and laboratory comparative evaluation of ten rapid malaria diagnostic tests.

    No full text
    The paper reports on a comparative evaluation of 10 rapid malaria tests available in South Africa in 1998: AccuCheck (AC, developmental), Cape Biotech (CB), ICT Malaria Pf (ICT1) and Pf/Pv (ICT2), Kat Medical (KAT), MakroMal (MM), OptiMAL (OP), ParaSight-F (PS), Quorum (Q), Determine-Malaria (DM). In a laboratory study, designed to test absolute detection limits, Plasmodium falciparum-infected blood was diluted with uninfected blood to known parasite concentrations ranging from 500 to 0.1 parasites per microlitre (P/microL). The 50% detection limits were: ICT1, 3.28; ICT2, 4.86; KAT, 6.36; MM, 9.37; CB, 11.42; DM, 12.40; Q, 16.98; PS, 20; AC, 31.15 and OP, 91.16 P/microL. A field study was carried out to test post-treatment specificity. Blood samples from malaria patients were tested with all products (except AC and DM) on the day of treatment and 3 and 7 days thereafter, against a gold standard of microscopy and polymerase chain reaction (PCR). OP and PS produced fewer false-positive results on day 7 (18 and 19%, respectively) than the other rapid tests (38-56%). However, microscopy, PCR, OP and PS disagreed largely as to which individuals remained positive. The tests were further compared with regard to general specificity, particularly cross-reactivity with rheumatoid factor, speed, simplicity, their ability to detect other species, storage requirements and general presentation

    Intra-and-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral RapidEye Sensor and Advanced Machine Learning Algorithms

    No full text
    The quantification of aboveground biomass using remote sensing is critical for better understanding the role of forests in carbon sequestration and for informed sustainable management. Although remote sensing techniques have been proven useful in assessing forest biomass in general, more is required to investigate their capabilities in predicting intra-and-inter species biomass which are mainly characterised by non-linear relationships. In this study, we tested two machine learning algorithms, Stochastic Gradient Boosting (SGB) and Random Forest (RF) regression trees to predict intra-and-inter species biomass using high resolution RapidEye reflectance bands as well as the derived vegetation indices in a commercial plantation. The results showed that the SGB algorithm yielded the best performance for intra-and-inter species biomass prediction; using all the predictor variables as well as based on the most important selected variables. For example using the most important variables the algorithm produced an R2 of 0.80 and RMSE of 16.93 t·ha−1 for E. grandis; R2 of 0.79, RMSE of 17.27 t·ha−1 for P. taeda and R2 of 0.61, RMSE of 43.39 t·ha−1 for the combined species data sets. Comparatively, RF yielded plausible results only for E. dunii (R2 of 0.79; RMSE of 7.18 t·ha−1). We demonstrated that although the two statistical methods were able to predict biomass accurately, RF produced weaker results as compared to SGB when applied to combined species dataset. The result underscores the relevance of stochastic models in predicting biomass drawn from different species and genera using the new generation high resolution RapidEye sensor with strategically positioned bands

    Immune senescence: significance of the stromal microenvironment

    No full text
    The immune system undergoes age‐associated changes known as immunosenescence, resulting in increased susceptibility to infections, cancers and autoimmunity in the aged. The basis of our understanding of immunosenescence has been derived primarily from studies examining intrinsic defects within many of the cells of the immune system. While these studies have provided insight into the mechanisms of immunosenescence, a picture is now emerging that the stromal microenvironment within lymphoid organs also contributes significantly to the age‐associated decline of immune function. These extrinsic defects appear to impact the functional activity of immune cells and may offer a potential target to recover immune activity. Indeed, rejuvenation studies which have targeted the stromal niche have restored immune function in aged successfully, highlighting the impact of the microenvironment towards the aetiology of immunosenescence
    corecore