417 research outputs found

    Relative sea level chronology determined from raised marine sediments and coastal isolation basins, northeastern Ellesmere Island, Arctic Canada

    Get PDF
    A new relative sea level curve for the Robeson Channel area constrasts with previously published curves for the area by inferring that rapid emergence may have commenced at c7400 BP, as much as 1200yr earlier than previously predicted. Subsequently, uplift may have occurred at much lower rates from c6000 BP to present. A comparison of shell dates used for the relative sea level curve and dates on disseminated total organic carbon (TOC) fraction from lacustrine and marine sediments from sediment cores from emerged coastal lakes shows wide discrepancies

    Characterizing top gated bilayer graphene interaction with its environment by Raman spectroscopy

    Full text link
    In this work we study the behavior of the optical phonon modes in bilayer graphene devices by applying top gate voltage, using Raman scattering. We observe the splitting of the Raman G band as we tune the Fermi level of the sample, which is explained in terms of mixing of the Raman (Eg) and infrared (Eu) phonon modes, due to different doping in the two layers. We theoretically analyze our data in terms of the bilayer graphene phonon self-energy which includes non-homogeneous charge carrier doping between the graphene layers. We show that the comparison between the experiment and theoretical model not only gives information about the total charge concentration in the bilayer graphene device, but also allows to separately quantify the amount of unintentional charge coming from the top and the bottom of the system, and therefore to characterize the interaction of bilayer graphene with its surrounding environment

    A new photon recoil experiment: towards a determination of the fine structure constant

    Get PDF
    We report on progress towards a measurement of the fine structure constant to an accuracy of 5×10105\times 10^{-10} or better by measuring the ratio of the Planck constant to the mass of the cesium atom. Compared to similar experiments, ours is improved in three significant ways: (i) simultaneous conjugate interferometers, (ii) multi-photon Bragg diffraction between same internal states, and (iii) an about 1000 fold reduction of laser phase noise to -138 dBc/Hz. Combining that with a new method to simultaneously stabilize the phases of four frequencies, we achieve 0.2 mrad effective phase noise at the location of the atoms. In addition, we use active stabilization to suppress systematic effects due to beam misalignment.Comment: 12 pages, 9 figure

    Radiation and Cloud Observations on a High Arctic Plateau Ice Cap

    Get PDF

    Microstructural analysis of TRISO particles using multi-scale X-ray computed tomography

    Get PDF
    TRISO particles, a composite nuclear fuel built up by ceramic and graphitic layers, have outstanding high temperature resistance. TRISO fuel is the key technology for High Temperature Reactors (HTRs) and the Generation IV Very High Temperature Reactor (VHTR) variant. TRISO offers unparalleled containment of fission products and is extremely robust during accident conditions. An understanding of the thermal performance and mechanical properties of TRISO fuel requires a detailed knowledge of pore sizes, their distribution and interconnectivity. Here 50 nm, nano-, and 1 μm resolution, micro-computed tomography (CT), have been used to quantify non-destructively porosity of a surrogate TRISO particle at the 0.3–10 μm and 3–100 μm scales respectively. This indicates that pore distributions can reliably be measured down to a size approximately 3 times the pixel size which is consistent with the segmentation process. Direct comparison with Scanning Electron Microscopy (SEM) sections indicates that destructive sectioning can introduce significant levels of coarse damage, especially in the pyrolytic carbon layers. Further comparative work is required to identify means of minimizing such damage for SEM studies. Finally since it is non-destructive, multi-scale time-lapse X-ray CT opens the possibility of intermittently tracking the degradation of TRISO structure under thermal cycles or radiation conditions in order to validate models of degradation such as kernel movement. X-ray CT in-situ experimentation of TRISO particles under load and temperature could also be used to understand the internal changes that occur in the particles under accident conditions.Scanning and analysis was performed at the Henry Moseley X-ray Imaging Facility which has been funded through support from EPSRC under Grants EP/F007906, EP/F028431 and EP/I02249X. Imaging on the UltraXRM-L200 system was carried out at Zeiss Xradia Inc., Pleasanton, CA, USA

    Toward mountains without permanent snow and ice

    Get PDF
    The cryosphere in mountain regions is rapidly declining, a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. A cascade of effects will result, extending from mountains to lowlands with associated impacts on human livelihood, economy, and ecosystems. With rising air temperatures and increased radiative forcing, glaciers will become smaller and, in some cases, disappear, the area of frozen ground will diminish, the ratio of snow to rainfall will decrease, and the timing and magnitude of both maximum and minimum streamflow will change. These changes will affect erosion rates, sediment, and nutrient flux, and the biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat, and biotic communities. Changes in the length of the growing season will allow low-elevation plants and animals to expand their ranges upward. Slope failures due to thawing alpine permafrost, and outburst floods from glacier- and moraine-dammed lakes will threaten downstream populations. Societies even well beyond the mountains depend on meltwater from glaciers and snow for drinking water supplies, irrigation, mining, hydropower, agriculture, and recreation. Here, we review and, where possible, quantify the impacts of anticipated climate change on the alpine cryosphere, hydrosphere, and biosphere, and consider the implications for adaptation to a future of mountains without permanent snow and ice

    Accidental hepatic artery ligation in humans

    Get PDF
    Despite the vast amount of information from experimental animals, it has been difficult to obtain a clear-cut picture of the effects of ligation of the hepatic artery in humans with relatively normal livers. The last complete review of this subject in 1933 indicated that a mortality in excess of 50 per cent could be expected in non-cirrhotic patients with injury of the hepatic artery or its principal branches. Five cases of dearterialization of the normal human liver have been observed. These were due to accidental interruption of the right hepatic artery in four and the proper hepatic artery in one. The injured vessel was repaired in one case and ligated in the others. In four of the five patients the vascular disruption was the sole injury. In the other the common bile duct was also lacerated. There was no evidence of hepatic necrosis in any case although one patient died from complications of common duct repair. Transient changes in SGOT and temporary low grade bilirubinemia were commonly noted. In addition, all cases of ligation of the hepatic artery reported since 1933 have been compiled. On the basis of reviewed, as well as the presently reported cases, it is concluded that ligation of the hepatic artery or one of its branches in the patient with relatively normal hepatic function is not ordinarily fatal in the otherwise uncomplicated case. Adequate perfusion of the liver can usually be provided by the remaining portal venous flow and whatever arterial collaterals are present, unless additional factors further reduce the portal venous flow or increase hepatic oxygen need. These factors include fever, shock and anoxia. The key to therapy in unreconstructed injuries to the hepatic artery is avoidance of these secondary influences. © 1964

    Energy spectrum of a 2D Dirac electron in the presence of a constant magnetic field

    Full text link
    In this paper we obtain exact solutions of a 2D relativistic Dirac oscillator in the presence of a constant magnetic field. We compute the energy spectrum and discuss its dependence on the spin and magnetic field strength.Comment: 7 page

    Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions

    Full text link
    The generation of continuous-variable multipartite entangled states is important for several protocols of quantum information processing and communication, such as one-way quantum computation or controlled dense coding. In this article we theoretically show that multimode optical parametric oscillators can produce a great variety of such states by an appropriate control of the parametric interaction, what we accomplish by tailoring either the spatio-temporal shape of the pump, or the geometry of the nonlinear medium. Specific examples involving currently available optical parametric oscillators are given, hence showing that our ideas are within reach of present technology.Comment: 14 pages, 5 figure
    corecore