216 research outputs found

    Time Pattern of Sperm Whale Codas Recorded in the Mediterranean Sea 1985–1996.

    Get PDF

    Multiwavelength characterisation of an ACT-selected, lensed dusty star-forming galaxy at z=2.64

    Get PDF
    We present \ci\,(2--1) and multi-transition 12^{12}CO observations of a dusty star-forming galaxy, ACT\,J2029+0120, which we spectroscopically confirm to lie at zz\,=\,2.64. We detect CO(3--2), CO(5--4), CO(7--6), CO(8--7), and \ci\,(2--1) at high significance, tentatively detect HCO+^{+}(4--3), and place strong upper limits on the integrated strength of dense gas tracers (HCN(4--3) and CS(7--6)). Multi-transition CO observations and dense gas tracers can provide valuable constraints on the molecular gas content and excitation conditions in high-redshift galaxies. We therefore use this unique data set to construct a CO spectral line energy distribution (SLED) of the source, which is most consistent with that of a ULIRG/Seyfert or QSO host object in the taxonomy of the \textit{Herschel} Comprehensive ULIRG Emission Survey. We employ RADEX models to fit the peak of the CO SLED, inferring a temperature of T∌\sim117 K and nH2∌105n_{\text{H}_2}\sim10^5 cm−3^{-3}, most consistent with a ULIRG/QSO object and the presence of high density tracers. We also find that the velocity width of the \ci\ line is potentially larger than seen in all CO transitions for this object, and that the LC I(2−1)â€Č/LCO(3−2)â€ČL'_{\rm C\,I(2-1)}/L'_{\rm CO(3-2)} ratio is also larger than seen in other lensed and unlensed submillimeter galaxies and QSO hosts; if confirmed, this anomaly could be an effect of differential lensing of a shocked molecular outflow.Comment: Accepted for publication in Ap

    Metal A and Metal B Sites of Nuclear RNA Polymerases Pol IV and Pol V Are Required for siRNA-Dependent DNA Methylation and Gene Silencing

    Get PDF
    Plants are unique among eukaryotes in having five multi-subunit nuclear RNA polymerases: the ubiquitous RNA polymerases I, II and III plus two plant-specific activities, nuclear RNA polymerases IV and V (previously known as Polymerases IVa and IVb). Pol IV and Pol V are not required for viability but play non-redundant roles in small interfering RNA (siRNA)-mediated pathways, including a pathway that silences retrotransposons and endogenous repeats via siRNA-directed DNA methylation. RNA polymerase activity has not been demonstrated for Polymerases IV or V in vitro, making it unclear whether they are catalytically active enzymes. Their largest and second-largest subunit sequences have diverged considerably from Pol I, II and III in the vicinity of the catalytic center, yet retain the invariant Metal A and Metal B amino acid motifs that bind magnesium ions essential for RNA polymerization. By using site-directed mutagenesis in conjunction with in vivo functional assays, we show that the Metal A and Metal B motifs of Polymerases IV and V are essential for siRNA production, siRNA-directed DNA methylation, retrotransposon silencing, and the punctate nuclear localization patterns typical of both polymerases. Collectively, these data show that the minimal core sequences of polymerase active sites, the Metal A and B sites, are essential for Pol IV and Pol V biological functions, implying that both are catalytically active

    Sense and Antisense Transcripts of Convergent Gene Pairs in Arabidopsis thaliana Can Share a Common Polyadenylation Region

    Get PDF
    The Arabidopsis genome contains a large number of gene pairs that encode sense and antisense transcripts with overlapping 3â€Č regions, indicative for a potential role of natural antisense transcription in regulating sense gene expression or transcript processing. When we mapped poly(A) transcripts of three plant gene pairs with long overlapping antisense transcripts, we identified an unusual transcript composition for two of the three gene pairs. Both genes pairs encoded a class of long sense transcripts and a class of short sense transcripts that terminate within the same polyadenylation region as the antisense transcripts encoded by the opposite strand. We find that the presence of the short sense transcript was not dependent on the expression of an antisense transcript. This argues against the assumption that the common termination region for sense and antisense poly(A) transcripts is the result of antisense-specific regulation. We speculate that for some genes evolution may have especially favoured alternative polyadenylation events that shorten transcript length for gene pairs with overlapping sense/antisense transcription, if this reduces the likelihood for dsRNA formation and transcript degradation

    Sexually dimorphic characteristics of the small intestine and colon of prepubescent C57BL/6 mice

    Get PDF
    Background There is increasing appreciation for sexually dimorphic effects, but the molecular mechanisms underlying these effects are only partially understood. In the present study, we explored transcriptomics and epigenetic differences in the small intestine and colon of prepubescent male and female mice. In addition, the microbiota composition of the colonic luminal content has been examined. Methods At postnatal day 14, male and female C57BL/6 mice were sacrificed and the small intestine, colon and content of luminal colon were isolated. Gene expression of both segments of the intestine was analysed by microarray analysis. DNA methylation of the promoter regions of selected sexually dimorphic genes was examined by pyrosequencing. Composition of the microbiota was explored by deep sequencing. Results Sexually dimorphic genes were observed in both segments of the intestine of 2-week-old mouse pups, with a stronger effect in the small intestine. Amongst the total of 349 genes displaying a sexually dimorphic effect in the small intestine and/or colon, several candidates exhibited a previously established function in the intestine (i.e. Nts, Nucb2, Alox5ap and RetnlÎł). In addition, differential expression of genes linked to intestinal bowel disease (i.e. Ccr3, Ccl11 and Tnfr) and colorectal cancer development (i.e. Wt1 and Mmp25) was observed between males and females. Amongst the genes displaying significant sexually dimorphic expression, nine genes were histone-modifying enzymes, suggesting that epigenetic mechanisms might be a potential underlying regulatory mechanism. However, our results reveal no significant changes in DNA methylation of analysed CpGs within the selected differentially expressed genes. With respect to the bacterial community composition in the colon, a dominant effect of litter origin was found but no significant sex effect was detected. However, a sex effect on the dominance of specific taxa was observed. Conclusions This study reveals molecular dissimilarities between males and females in the small intestine and colon of prepubescent mice, which might underlie differences in physiological functioning and in disease predisposition in the two sexes

    The X-inactivation trans-activator Rnf12 is negatively regulated by pluripotency factors in embryonic stem cells

    Get PDF
    X-inactivation, the molecular mechanism enabling dosage compensation in mammals, is tightly controlled during mouse early embryogenesis. In the morula, X-inactivation is imprinted with exclusive silencing of the paternally inherited X-chromosome. In contrast, in the post-implantation epiblast, X-inactivation affects randomly either the paternal or the maternal X-chromosome. The transition from imprinted to random X-inactivation takes place in the inner cell mass (ICM) of the blastocyst from which embryonic stem (ES) cells are derived. The trigger of X-inactivation, Xist, is specifically downregulated in the pluripotent cells of the ICM, thereby ensuring the reactivation of the inactive paternal X-chromosome and the transient presence of two active X-chromosomes. Moreover, Tsix, a critical cis-repressor of Xist, is upregulated in the ICM and in ES cells where it imposes a particular chromatin state at the Xist promoter that ensures the establishment of random X-inactivation upon differentiation. Recently, we have shown that key transcription factors supporting pluripotency directly repress Xist and activate Tsix and thus couple Xist/Tsix control to pluripotency. In this manuscript, we report that Rnf12, a third X-linked gene critical for the regulation of X-inactivation, is under the control of Nanog, Oct4 and Sox2, the three factors lying at the heart of the pluripotency network. We conclude that in mouse ES cells the pluripotency-associated machinery exerts an exhaustive control of X-inactivation by taking over the regulation of all three major regulators of X-inactivation: Xist, Tsix, and Rnf12

    Differentiating Protein-Coding and Noncoding RNA: Challenges and Ambiguities

    Get PDF
    The assumption that RNA can be readily classified into either protein-coding or non-protein–coding categories has pervaded biology for close to 50 years. Until recently, discrimination between these two categories was relatively straightforward: most transcripts were clearly identifiable as protein-coding messenger RNAs (mRNAs), and readily distinguished from the small number of well-characterized non-protein–coding RNAs (ncRNAs), such as transfer, ribosomal, and spliceosomal RNAs. Recent genome-wide studies have revealed the existence of thousands of noncoding transcripts, whose function and significance are unclear. The discovery of this hidden transcriptome and the implicit challenge it presents to our understanding of the expression and regulation of genetic information has made the need to distinguish between mRNAs and ncRNAs both more pressing and more complicated. In this Review, we consider the diverse strategies employed to discriminate between protein-coding and noncoding transcripts and the fundamental difficulties that are inherent in what may superficially appear to be a simple problem. Misannotations can also run in both directions: some ncRNAs may actually encode peptides, and some of those currently thought to do so may not. Moreover, recent studies have shown that some RNAs can function both as mRNAs and intrinsically as functional ncRNAs, which may be a relatively widespread phenomenon. We conclude that it is difficult to annotate an RNA unequivocally as protein-coding or noncoding, with overlapping protein-coding and noncoding transcripts further confounding this distinction. In addition, the finding that some transcripts can function both intrinsically at the RNA level and to encode proteins suggests a false dichotomy between mRNAs and ncRNAs. Therefore, the functionality of any transcript at the RNA level should not be discounted

    The VANDELS ESO public spectroscopic survey : Final Data Release of 2087 spectra and spectroscopic measurements

    Get PDF
    © ESO 2021. The original publication is available at https://doi.org/10.1051/0004-6361/202040059VANDELS is an ESO Public Spectroscopic Survey designed to build a sample of high signal to noise, medium resolution spectra of galaxies at redshift between 1 and 6.5. Here we present the final Public Data Release of the VANDELS Survey, comprising 2087 redshift measurements. We give a detailed description of sample selection, observations and data reduction procedures. The final catalogue reaches a target selection completeness of 40% at iAB = 25. The high Signal to Noise ratio of the spectra (above 7 in 80% of the spectra) and the dispersion of 2.5{\AA} allowed us to measure redshifts with high precision, the redshift measurement success rate reaching almost 100%. Together with the redshift catalogue and the reduced spectra, we also provide optical mid-IR photometry and physical parameters derived through SED fitting. The observed galaxy sample comprises both passive and star forming galaxies covering a stellar mass range 8.3<Log(M*/Msolar)Peer reviewe
    • 

    corecore