714 research outputs found
Enhanced Production of Neutron-Rich Rare Isotopes in Peripheral Collisions at Fermi Energies
A large enhancement in the production of neutron-rich projectile residues is
observed in the reactions of a 25 MeV/nucleon 86Kr beam with the neutron rich
124Sn and 64Ni targets relative to the predictions of the EPAX parametrization
of high-energy fragmentation, as well as relative to the reaction with the less
neutron-rich 112Sn target. The data demonstrate the significant effect of the
target neutron-to-proton ratio (N/Z) in peripheral collisions at Fermi
energies. A hybrid model based on a deep-inelastic transfer code (DIT) followed
by a statistical de-excitation code appears to account for part of the observed
large cross sections. The DIT simulation indicates that the production of the
neutron-rich nuclides in these reactions is associated with peripheral nucleon
exchange. In such peripheral encounters, the neutron skins of the neutron-rich
124Sn and 64Ni target nuclei may play an important role. From a practical
viewpoint, such reactions between massive neutron-rich nuclei offer a novel and
attractive synthetic avenue to access extremely neutron-rich rare isotopes
towards the neutron-drip line.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
Electrical model of an NMOS body biased structure in triple-well technology under photoelectric laser stimulation
International audience— This study is driven by the need to optimize failure analysis methodologies based on laser/silicon interactions with an integrated circuit using a triple-well process. It is therefore mandatory to understand the behavior of elementary devices to laser illumination, in order to model and predict the behavior of more complex circuits. This paper presents measurements of the photoelectric currents induced by a pulsed-laser on an NMOS transistor in triple-well Psubstrate/DeepNwell/Pwell structure dedicated to low power body biasing techniques. This evaluation compares the triple-well structure to a classical Psubstrate-only structure of an NMOS transistor. It reveals the possible activation change of the bipolar transistors. Based on these experimental measurements, an electrical model is proposed that makes it possible to simulate the effects induced by photoelectric laser stimulation
SIGMA and XTE observations of the soft X-ray transient XTEJ1755-324
We present observations of the X-ray transient XTEJ1755-324 performed during
summer 1997 with the XTE satellite and with the SIGMA hard X-ray telescope
onboard the GRANAT observatory. The source was first detected in soft X-rays
with XTE on July 25 1997 with a rather soft X-ray spectrum and its outburst was
monitored in soft X-rays up to November 1997. On September 16 it was first
detected in hard X-rays by the French soft gamma ray telescope SIGMA during a
Galactic Center observation. The flux was stronger on September 16 and 17
reaching a level of about 110 mCrab in the 40-80 keV energy band. On the same
days the photon index of the spectrum was determined to be alpha =-2.3 +/- 0.9
(1 sigma error) while the 40-150 keV luminosity was about 8 x 10^{36} erg/s for
a distance of 8.5 kpc. SIGMA and XTE results on this source indicate that this
source had an ultrasoft-like state during its main outburst and a harder
secondary outburst in September. These characteristics make the source similar
to X-Nova Muscae 1991, a well known black hole candidate.Comment: 19 pages LaTeX, 6 Postscript figures included, Accepted by
Astrophysical Journa
Discovery of the Vanadium Isotopes
Twenty-four vanadium isotopes have so far been observed; the discovery of
these isotopes is discussed. For each isotope a brief summary of the first
refereed publication, including the production and identification method, is
presented.Comment: to be published in At. Data. Nucl. Data Table
Laser Fault Injection into SRAM cells: Picosecond versus Nanosecond pulses
International audience—Laser fault injection into SRAM cells is a widely used technique to perform fault attacks. In previous works, Roscian and Sarafianos studied the relations between the layout of the cell, its different laser-sensitive areas and their associated fault model using 50 ns duration laser pulses. In this paper, we report similar experiments carried out using shorter laser pulses (30 ps duration instead of 50 ns). Laser-sensitive areas that did not appear at 50 ns were observed. Additionally, these experiments confirmed the validity of the bit-set/bit-reset fault model over the bit-flip one. We also propose an upgrade of the simulation model they used to take into account laser pulses in the picosecond range. Finally, we performed additional laser fault injection experiments on the RAM memory of a microcontroller to validate the previous results
Proton drip-line nuclei in relativistic mean-field theory
The position of the two-proton drip line has been calculated for even-even
nuclei with in the framework of the relativistic mean-field
(RMF) theory. The current model uses the NL3 effective interaction in the
mean-field Lagrangian and describes pairing correlations in the
Bardeen-Cooper-Schrieffer (BCS) formalism. The predictions of the RMF theory
are compared with those of the Hartree-Fock+BCS approach (with effective force
Skyrme SIII) and the finite-range droplet model (FRDM) and with the available
experimental information.Comment: 18 pages, RevTeX, 2 p.s figures, to appear in Phys. Rev.
Proton drip-line nuclei in Relativistic Hartree-Bogoliubov theory
Ground-state properties of spherical even-even nuclei and
are described in the framework of Relativistic Hartree Bogoliubov
(RHB) theory. The model uses the NL3 effective interaction in the mean-field
Lagrangian, and describes pairing correlations by the pairing part of the
finite range Gogny interaction D1S. Binding energies, two-proton separation
energies, and proton radii that result from fully self-consistent RHB
solutions are compared with experimental data. The model predicts the location
of the proton drip-line. The isospin dependence of the effective spin-orbit
potential is discussed, as well as pairing properties that result from the
finite range interaction in the channel.Comment: 12 pages, RevTex, 10 p.s figures, submitted to Phys. Rev.
A possible association of the new VHE gamma-ray source HESS J1825--137 with the pulsar wind nebula G18.0--0.7
We report on a possible association of the recently discovered very
high-energy -ray source HESS J1825--137 with the pulsar wind nebula
(commonly referred to as G 18.0--0.7) of the year old
Vela-like pulsar PSR B1823--13. HESS J1825--137 was detected with a
significance of 8.1 in the Galactic Plane survey conducted with the
H.E.S.S. instrument in 2004. The centroid position of HESS J1825--137 is offset
by 11\arcmin south of the pulsar position. \emph{XMM-Newton} observations have
revealed X-ray synchrotron emission of an asymmetric pulsar wind nebula
extending to the south of the pulsar. We argue that the observed morphology and
TeV spectral index suggest that HESS J1825--137 and G 18.0--0.7 may be
associated: the lifetime of TeV emitting electrons is expected to be longer
compared to the {\it XMM-Newton} X-ray emitting electrons, resulting in
electrons from earlier epochs (when the spin-down power was larger)
contributing to the present TeV flux. These electrons are expected to be
synchrotron cooled, which explains the observed photon index of , and
the longer lifetime of TeV emitting electrons naturally explains why the TeV
nebula is larger than the X-ray size. Finally, supernova remnant expansion into
an inhomogeneous medium is expected to create reverse shocks interacting at
different times with the pulsar wind nebula, resulting in the offset X-ray and
TeV -ray morphology.Comment: 5 pages, 3 figures, to appear in Astronomy and Astrophysics Letter
Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017
Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very
high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio
fluxes. Our aim is to understand the radiative processes by investigating the
observed emission and its production mechanism using the High Energy
Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent
observations of the BL Lac source RGB J0152+017 made in late October and
November 2007 with the H.E.S.S. array consisting of four imaging atmospheric
Cherenkov telescopes. Contemporaneous observations were made in X-rays by the
Swift and RXTE satellites, in the optical band with the ATOM telescope, and in
the radio band with the Nancay Radio Telescope. Results: A signal of 173
gamma-ray photons corresponding to a statistical significance of 6.6 sigma was
found in the data. The energy spectrum of the source can be described by a
powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux
above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source
spectral energy distribution (SED) can be described using a two-component
non-thermal synchrotron self-Compton (SSC) leptonic model, except in the
optical band, which is dominated by a thermal host galaxy component. The
parameters that are found are very close to those found in similar SSC studies
in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE
gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from
the SED in Swift data, allows clearly classification it as a
high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures
- …
